So im kinda curious which this would be. I have a question to turn a Boolean expression into a logic circuit which I have no issues doing but im a little confused about this question. I will leave an image below of the expression and also the circuit I feel like it is, im just confused whether (A.B) is AND or NAND as I am not sure if the line above everything is for the + only or for the first brackets too.enter image description here
The image above is how I see the circuit
-
\$\begingroup\$ @vicatcu Yes the only reason I got a little confused was due to the line above the whole expression which at first I thought was only for the OR gate but just wanted to double check and make sure my original layout was correct, appreciate the quick response also \$\endgroup\$Ryan– Ryan2019年11月14日 00:39:50 +00:00Commented Nov 14, 2019 at 0:39
-
\$\begingroup\$ yea the over-bar applies to as many of the terms that it covers.You can, of course, use De Morgan's Law to move the negations around. \$\endgroup\$vicatcu– vicatcu2019年11月14日 00:41:54 +00:00Commented Nov 14, 2019 at 0:41
1 Answer 1
A dot is one traditional symbol for AND in Boolean notation. If it were NAND, it would have an over-bar over the dotted terms. Similarly, plus is one traditional symbol for OR, and the usual companion to dot for AND, and NOR would typically be expressed as an over-bar over the plussed terms. So, I think your answer looks like a faithful implementation of the expression.
The other common symbols that are used are ^ for AND and v for OR.