As in the picture , how can I determine ki , kp , kd I tried (using provided data) by finding ζ and ωn But I end up with third order transfer function could not subsitute my results to find PID parameters (ki kp kd ) values
-
1\$\begingroup\$ Hi and welcome. Please edit the post so the graphic appears correctly oriented. \$\endgroup\$mike65535– mike655352018年11月27日 16:22:11 +00:00Commented Nov 27, 2018 at 16:22
-
2\$\begingroup\$ Look up "dominant pole" in your book. If you have one pole or pole pair that's much slower than the rest, that pole or pole pair tends to dominate. From the math provided you've got the freedom to select all three poles. Choose the real pole to be enough higher than the resonant pair to be considered "dominant" by your book, and proceed. \$\endgroup\$TimWescott– TimWescott2018年11月27日 16:24:26 +00:00Commented Nov 27, 2018 at 16:24
-
\$\begingroup\$ BTW: your provided transfer function doesn't look right for a PID in the forward path. You may want to put your block diagram into a separate question along with your derivation; ask if you got it right. \$\endgroup\$TimWescott– TimWescott2018年11月27日 16:25:18 +00:00Commented Nov 27, 2018 at 16:25
-
\$\begingroup\$ Hi in fact this is answer sheet in page 5 they used "standered transfer function .. Why they equate alpha to 10 .. studocu.com/en-us/document/university-of-the-west-of-england/… \$\endgroup\$Freeman– Freeman2018年11月27日 21:40:55 +00:00Commented Nov 27, 2018 at 21:40
1 Answer 1
Well, we know that a second order system can be written in the following form:
$$\mathcal{H}\left(\text{s}\right):=\frac{\text{Y}\left(\text{s}\right)}{\text{X}\left(\text{s}\right)}=\frac{1}{\frac{1}{\omega_0^2}\cdot\text{s}^2+\frac{2\beta}{\omega_0}\cdot\text{s}+1}\tag1$$
When there is overshoot we know that:
- Overshoot (in \$\text{%}\$): $$\text{D}=100\cdot\exp\left(-\pi\cdot\frac{\beta}{\sqrt{1-\beta^2}}\right)\tag2$$
- Rise time: $$\text{t}_\text{p}=\frac{\pi}{\omega}\tag3$$
And we have overshoot so we know the relation between \$\omega\$, \$\omega_0\$ and \$\beta\$:
$$\omega=\omega_0\cdot\sqrt{1-\beta^2}\tag4$$
So, we get (using your biggest values):
- $10ドル=100\cdot\exp\left(-\pi\cdot\frac{\beta}{\sqrt{1-\beta^2}}\right)\space\Longleftrightarrow\space\beta=\frac{\ln\left(10\right)}{\sqrt{\pi^2+\ln^2\left(10\right)}}\tag5$$
- $1ドル=\frac{\pi}{\omega}\space\Longleftrightarrow\space\omega=\pi\tag6$$
- $$\omega=\omega_0\cdot\sqrt{1-\beta^2}\space\Longleftrightarrow\space\omega_0=\sqrt{\pi^2+\ln^2\left(10\right)}\tag7$$
So:
$$\mathcal{H}\left(\text{s}\right):=\frac{\text{Y}\left(\text{s}\right)}{\text{X}\left(\text{s}\right)}=\frac{1}{\frac{1}{\pi^2+\ln^2\left(10\right)}\cdot\text{s}^2+\frac{\ln\left(100\right)}{\pi^2+\ln^2\left(10\right)}\cdot\text{s}+1}\tag8$$
-
\$\begingroup\$ Here in page 5 studocu.com/en-us/document/university-of-the-west-of-england/… they used " standered form " i dont understood why they equate alpha (α) to 10 .. \$\endgroup\$Freeman– Freeman2018年11月27日 21:38:43 +00:00Commented Nov 27, 2018 at 21:38
Explore related questions
See similar questions with these tags.