PostgreSQL Source Code: src/backend/optimizer/path/joinrels.c Source File

PostgreSQL Source Code git master
joinrels.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * joinrels.c
4 * Routines to determine which relations should be joined
5 *
6 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
7 * Portions Copyright (c) 1994, Regents of the University of California
8 *
9 *
10 * IDENTIFICATION
11 * src/backend/optimizer/path/joinrels.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "miscadmin.h"
18#include "optimizer/appendinfo.h"
19#include "optimizer/joininfo.h"
20#include "optimizer/pathnode.h"
21#include "optimizer/paths.h"
22#include "optimizer/planner.h"
23#include "partitioning/partbounds.h"
24#include "utils/memutils.h"
25
26
27static void make_rels_by_clause_joins(PlannerInfo *root,
28 RelOptInfo *old_rel,
29 List *other_rels,
30 int first_rel_idx);
31static void make_rels_by_clauseless_joins(PlannerInfo *root,
32 RelOptInfo *old_rel,
33 List *other_rels);
34static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel);
35static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel);
36static bool restriction_is_constant_false(List *restrictlist,
37 RelOptInfo *joinrel,
38 bool only_pushed_down);
39static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
40 RelOptInfo *rel2, RelOptInfo *joinrel,
41 SpecialJoinInfo *sjinfo, List *restrictlist);
42static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1,
43 RelOptInfo *rel2, RelOptInfo *joinrel,
44 SpecialJoinInfo *parent_sjinfo,
45 List *parent_restrictlist);
46static SpecialJoinInfo *build_child_join_sjinfo(PlannerInfo *root,
47 SpecialJoinInfo *parent_sjinfo,
48 Relids left_relids, Relids right_relids);
49static void free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
50 SpecialJoinInfo *parent_sjinfo);
51static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
52 RelOptInfo *rel2, RelOptInfo *joinrel,
53 SpecialJoinInfo *parent_sjinfo,
54 List **parts1, List **parts2);
55static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
56 RelOptInfo *rel1, RelOptInfo *rel2,
57 List **parts1, List **parts2);
58
59
60/*
61 * join_search_one_level
62 * Consider ways to produce join relations containing exactly 'level'
63 * jointree items. (This is one step of the dynamic-programming method
64 * embodied in standard_join_search.) Join rel nodes for each feasible
65 * combination of lower-level rels are created and returned in a list.
66 * Implementation paths are created for each such joinrel, too.
67 *
68 * level: level of rels we want to make this time
69 * root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
70 *
71 * The result is returned in root->join_rel_level[level].
72 */
73void
74 join_search_one_level(PlannerInfo *root, int level)
75{
76 List **joinrels = root->join_rel_level;
77 ListCell *r;
78 int k;
79
80 Assert(joinrels[level] == NIL);
81
82 /* Set join_cur_level so that new joinrels are added to proper list */
83 root->join_cur_level = level;
84
85 /*
86 * First, consider left-sided and right-sided plans, in which rels of
87 * exactly level-1 member relations are joined against initial relations.
88 * We prefer to join using join clauses, but if we find a rel of level-1
89 * members that has no join clauses, we will generate Cartesian-product
90 * joins against all initial rels not already contained in it.
91 */
92 foreach(r, joinrels[level - 1])
93 {
94 RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
95
96 if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
97 has_join_restriction(root, old_rel))
98 {
99 int first_rel;
100
101 /*
102 * There are join clauses or join order restrictions relevant to
103 * this rel, so consider joins between this rel and (only) those
104 * initial rels it is linked to by a clause or restriction.
105 *
106 * At level 2 this condition is symmetric, so there is no need to
107 * look at initial rels before this one in the list; we already
108 * considered such joins when we were at the earlier rel. (The
109 * mirror-image joins are handled automatically by make_join_rel.)
110 * In later passes (level > 2), we join rels of the previous level
111 * to each initial rel they don't already include but have a join
112 * clause or restriction with.
113 */
114 if (level == 2) /* consider remaining initial rels */
115 first_rel = foreach_current_index(r) + 1;
116 else
117 first_rel = 0;
118
119 make_rels_by_clause_joins(root, old_rel, joinrels[1], first_rel);
120 }
121 else
122 {
123 /*
124 * Oops, we have a relation that is not joined to any other
125 * relation, either directly or by join-order restrictions.
126 * Cartesian product time.
127 *
128 * We consider a cartesian product with each not-already-included
129 * initial rel, whether it has other join clauses or not. At
130 * level 2, if there are two or more clauseless initial rels, we
131 * will redundantly consider joining them in both directions; but
132 * such cases aren't common enough to justify adding complexity to
133 * avoid the duplicated effort.
134 */
135 make_rels_by_clauseless_joins(root,
136 old_rel,
137 joinrels[1]);
138 }
139 }
140
141 /*
142 * Now, consider "bushy plans" in which relations of k initial rels are
143 * joined to relations of level-k initial rels, for 2 <= k <= level-2.
144 *
145 * We only consider bushy-plan joins for pairs of rels where there is a
146 * suitable join clause (or join order restriction), in order to avoid
147 * unreasonable growth of planning time.
148 */
149 for (k = 2;; k++)
150 {
151 int other_level = level - k;
152
153 /*
154 * Since make_join_rel(x, y) handles both x,y and y,x cases, we only
155 * need to go as far as the halfway point.
156 */
157 if (k > other_level)
158 break;
159
160 foreach(r, joinrels[k])
161 {
162 RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
163 int first_rel;
164 ListCell *r2;
165
166 /*
167 * We can ignore relations without join clauses here, unless they
168 * participate in join-order restrictions --- then we might have
169 * to force a bushy join plan.
170 */
171 if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
172 !has_join_restriction(root, old_rel))
173 continue;
174
175 if (k == other_level) /* only consider remaining rels */
176 first_rel = foreach_current_index(r) + 1;
177 else
178 first_rel = 0;
179
180 for_each_from(r2, joinrels[other_level], first_rel)
181 {
182 RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
183
184 if (!bms_overlap(old_rel->relids, new_rel->relids))
185 {
186 /*
187 * OK, we can build a rel of the right level from this
188 * pair of rels. Do so if there is at least one relevant
189 * join clause or join order restriction.
190 */
191 if (have_relevant_joinclause(root, old_rel, new_rel) ||
192 have_join_order_restriction(root, old_rel, new_rel))
193 {
194 (void) make_join_rel(root, old_rel, new_rel);
195 }
196 }
197 }
198 }
199 }
200
201 /*----------
202 * Last-ditch effort: if we failed to find any usable joins so far, force
203 * a set of cartesian-product joins to be generated. This handles the
204 * special case where all the available rels have join clauses but we
205 * cannot use any of those clauses yet. This can only happen when we are
206 * considering a join sub-problem (a sub-joinlist) and all the rels in the
207 * sub-problem have only join clauses with rels outside the sub-problem.
208 * An example is
209 *
210 * SELECT ... FROM a INNER JOIN b ON TRUE, c, d, ...
211 * WHERE a.w = c.x and b.y = d.z;
212 *
213 * If the "a INNER JOIN b" sub-problem does not get flattened into the
214 * upper level, we must be willing to make a cartesian join of a and b;
215 * but the code above will not have done so, because it thought that both
216 * a and b have joinclauses. We consider only left-sided and right-sided
217 * cartesian joins in this case (no bushy).
218 *----------
219 */
220 if (joinrels[level] == NIL)
221 {
222 /*
223 * This loop is just like the first one, except we always call
224 * make_rels_by_clauseless_joins().
225 */
226 foreach(r, joinrels[level - 1])
227 {
228 RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
229
230 make_rels_by_clauseless_joins(root,
231 old_rel,
232 joinrels[1]);
233 }
234
235 /*----------
236 * When special joins are involved, there may be no legal way
237 * to make an N-way join for some values of N. For example consider
238 *
239 * SELECT ... FROM t1 WHERE
240 * x IN (SELECT ... FROM t2,t3 WHERE ...) AND
241 * y IN (SELECT ... FROM t4,t5 WHERE ...)
242 *
243 * We will flatten this query to a 5-way join problem, but there are
244 * no 4-way joins that join_is_legal() will consider legal. We have
245 * to accept failure at level 4 and go on to discover a workable
246 * bushy plan at level 5.
247 *
248 * However, if there are no special joins and no lateral references
249 * then join_is_legal() should never fail, and so the following sanity
250 * check is useful.
251 *----------
252 */
253 if (joinrels[level] == NIL &&
254 root->join_info_list == NIL &&
255 !root->hasLateralRTEs)
256 elog(ERROR, "failed to build any %d-way joins", level);
257 }
258}
259
260/*
261 * make_rels_by_clause_joins
262 * Build joins between the given relation 'old_rel' and other relations
263 * that participate in join clauses that 'old_rel' also participates in
264 * (or participate in join-order restrictions with it).
265 * The join rels are returned in root->join_rel_level[join_cur_level].
266 *
267 * Note: at levels above 2 we will generate the same joined relation in
268 * multiple ways --- for example (a join b) join c is the same RelOptInfo as
269 * (b join c) join a, though the second case will add a different set of Paths
270 * to it. This is the reason for using the join_rel_level mechanism, which
271 * automatically ensures that each new joinrel is only added to the list once.
272 *
273 * 'old_rel' is the relation entry for the relation to be joined
274 * 'other_rels': a list containing the other rels to be considered for joining
275 * 'first_rel_idx': the first rel to be considered in 'other_rels'
276 *
277 * Currently, this is only used with initial rels in other_rels, but it
278 * will work for joining to joinrels too.
279 */
280static void
281 make_rels_by_clause_joins(PlannerInfo *root,
282 RelOptInfo *old_rel,
283 List *other_rels,
284 int first_rel_idx)
285{
286 ListCell *l;
287
288 for_each_from(l, other_rels, first_rel_idx)
289 {
290 RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
291
292 if (!bms_overlap(old_rel->relids, other_rel->relids) &&
293 (have_relevant_joinclause(root, old_rel, other_rel) ||
294 have_join_order_restriction(root, old_rel, other_rel)))
295 {
296 (void) make_join_rel(root, old_rel, other_rel);
297 }
298 }
299}
300
301/*
302 * make_rels_by_clauseless_joins
303 * Given a relation 'old_rel' and a list of other relations
304 * 'other_rels', create a join relation between 'old_rel' and each
305 * member of 'other_rels' that isn't already included in 'old_rel'.
306 * The join rels are returned in root->join_rel_level[join_cur_level].
307 *
308 * 'old_rel' is the relation entry for the relation to be joined
309 * 'other_rels': a list containing the other rels to be considered for joining
310 *
311 * Currently, this is only used with initial rels in other_rels, but it would
312 * work for joining to joinrels too.
313 */
314static void
315 make_rels_by_clauseless_joins(PlannerInfo *root,
316 RelOptInfo *old_rel,
317 List *other_rels)
318{
319 ListCell *l;
320
321 foreach(l, other_rels)
322 {
323 RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
324
325 if (!bms_overlap(other_rel->relids, old_rel->relids))
326 {
327 (void) make_join_rel(root, old_rel, other_rel);
328 }
329 }
330}
331
332
333/*
334 * join_is_legal
335 * Determine whether a proposed join is legal given the query's
336 * join order constraints; and if it is, determine the join type.
337 *
338 * Caller must supply not only the two rels, but the union of their relids.
339 * (We could simplify the API by computing joinrelids locally, but this
340 * would be redundant work in the normal path through make_join_rel.
341 * Note that this value does NOT include the RT index of any outer join that
342 * might need to be performed here, so it's not the canonical identifier
343 * of the join relation.)
344 *
345 * On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
346 * else it's set to point to the associated SpecialJoinInfo node. Also,
347 * *reversed_p is set true if the given relations need to be swapped to
348 * match the SpecialJoinInfo node.
349 */
350static bool
351 join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
352 Relids joinrelids,
353 SpecialJoinInfo **sjinfo_p, bool *reversed_p)
354{
355 SpecialJoinInfo *match_sjinfo;
356 bool reversed;
357 bool unique_ified;
358 bool must_be_leftjoin;
359 ListCell *l;
360
361 /*
362 * Ensure output params are set on failure return. This is just to
363 * suppress uninitialized-variable warnings from overly anal compilers.
364 */
365 *sjinfo_p = NULL;
366 *reversed_p = false;
367
368 /*
369 * If we have any special joins, the proposed join might be illegal; and
370 * in any case we have to determine its join type. Scan the join info
371 * list for matches and conflicts.
372 */
373 match_sjinfo = NULL;
374 reversed = false;
375 unique_ified = false;
376 must_be_leftjoin = false;
377
378 foreach(l, root->join_info_list)
379 {
380 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
381
382 /*
383 * This special join is not relevant unless its RHS overlaps the
384 * proposed join. (Check this first as a fast path for dismissing
385 * most irrelevant SJs quickly.)
386 */
387 if (!bms_overlap(sjinfo->min_righthand, joinrelids))
388 continue;
389
390 /*
391 * Also, not relevant if proposed join is fully contained within RHS
392 * (ie, we're still building up the RHS).
393 */
394 if (bms_is_subset(joinrelids, sjinfo->min_righthand))
395 continue;
396
397 /*
398 * Also, not relevant if SJ is already done within either input.
399 */
400 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
401 bms_is_subset(sjinfo->min_righthand, rel1->relids))
402 continue;
403 if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
404 bms_is_subset(sjinfo->min_righthand, rel2->relids))
405 continue;
406
407 /*
408 * If it's a semijoin and we already joined the RHS to any other rels
409 * within either input, then we must have unique-ified the RHS at that
410 * point (see below). Therefore the semijoin is no longer relevant in
411 * this join path.
412 */
413 if (sjinfo->jointype == JOIN_SEMI)
414 {
415 if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
416 !bms_equal(sjinfo->syn_righthand, rel1->relids))
417 continue;
418 if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
419 !bms_equal(sjinfo->syn_righthand, rel2->relids))
420 continue;
421 }
422
423 /*
424 * If one input contains min_lefthand and the other contains
425 * min_righthand, then we can perform the SJ at this join.
426 *
427 * Reject if we get matches to more than one SJ; that implies we're
428 * considering something that's not really valid.
429 */
430 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
431 bms_is_subset(sjinfo->min_righthand, rel2->relids))
432 {
433 if (match_sjinfo)
434 return false; /* invalid join path */
435 match_sjinfo = sjinfo;
436 reversed = false;
437 }
438 else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
439 bms_is_subset(sjinfo->min_righthand, rel1->relids))
440 {
441 if (match_sjinfo)
442 return false; /* invalid join path */
443 match_sjinfo = sjinfo;
444 reversed = true;
445 }
446 else if (sjinfo->jointype == JOIN_SEMI &&
447 bms_equal(sjinfo->syn_righthand, rel2->relids) &&
448 create_unique_paths(root, rel2, sjinfo) != NULL)
449 {
450 /*----------
451 * For a semijoin, we can join the RHS to anything else by
452 * unique-ifying the RHS (if the RHS can be unique-ified).
453 * We will only get here if we have the full RHS but less
454 * than min_lefthand on the LHS.
455 *
456 * The reason to consider such a join path is exemplified by
457 * SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
458 * If we insist on doing this as a semijoin we will first have
459 * to form the cartesian product of A*B. But if we unique-ify
460 * C then the semijoin becomes a plain innerjoin and we can join
461 * in any order, eg C to A and then to B. When C is much smaller
462 * than A and B this can be a huge win. So we allow C to be
463 * joined to just A or just B here, and then make_join_rel has
464 * to handle the case properly.
465 *
466 * Note that actually we'll allow unique-ified C to be joined to
467 * some other relation D here, too. That is legal, if usually not
468 * very sane, and this routine is only concerned with legality not
469 * with whether the join is good strategy.
470 *----------
471 */
472 if (match_sjinfo)
473 return false; /* invalid join path */
474 match_sjinfo = sjinfo;
475 reversed = false;
476 unique_ified = true;
477 }
478 else if (sjinfo->jointype == JOIN_SEMI &&
479 bms_equal(sjinfo->syn_righthand, rel1->relids) &&
480 create_unique_paths(root, rel1, sjinfo) != NULL)
481 {
482 /* Reversed semijoin case */
483 if (match_sjinfo)
484 return false; /* invalid join path */
485 match_sjinfo = sjinfo;
486 reversed = true;
487 unique_ified = true;
488 }
489 else
490 {
491 /*
492 * Otherwise, the proposed join overlaps the RHS but isn't a valid
493 * implementation of this SJ. But don't panic quite yet: the RHS
494 * violation might have occurred previously, in one or both input
495 * relations, in which case we must have previously decided that
496 * it was OK to commute some other SJ with this one. If we need
497 * to perform this join to finish building up the RHS, rejecting
498 * it could lead to not finding any plan at all. (This can occur
499 * because of the heuristics elsewhere in this file that postpone
500 * clauseless joins: we might not consider doing a clauseless join
501 * within the RHS until after we've performed other, validly
502 * commutable SJs with one or both sides of the clauseless join.)
503 * This consideration boils down to the rule that if both inputs
504 * overlap the RHS, we can allow the join --- they are either
505 * fully within the RHS, or represent previously-allowed joins to
506 * rels outside it.
507 */
508 if (bms_overlap(rel1->relids, sjinfo->min_righthand) &&
509 bms_overlap(rel2->relids, sjinfo->min_righthand))
510 continue; /* assume valid previous violation of RHS */
511
512 /*
513 * The proposed join could still be legal, but only if we're
514 * allowed to associate it into the RHS of this SJ. That means
515 * this SJ must be a LEFT join (not SEMI or ANTI, and certainly
516 * not FULL) and the proposed join must not overlap the LHS.
517 */
518 if (sjinfo->jointype != JOIN_LEFT ||
519 bms_overlap(joinrelids, sjinfo->min_lefthand))
520 return false; /* invalid join path */
521
522 /*
523 * To be valid, the proposed join must be a LEFT join; otherwise
524 * it can't associate into this SJ's RHS. But we may not yet have
525 * found the SpecialJoinInfo matching the proposed join, so we
526 * can't test that yet. Remember the requirement for later.
527 */
528 must_be_leftjoin = true;
529 }
530 }
531
532 /*
533 * Fail if violated any SJ's RHS and didn't match to a LEFT SJ: the
534 * proposed join can't associate into an SJ's RHS.
535 *
536 * Also, fail if the proposed join's predicate isn't strict; we're
537 * essentially checking to see if we can apply outer-join identity 3, and
538 * that's a requirement. (This check may be redundant with checks in
539 * make_outerjoininfo, but I'm not quite sure, and it's cheap to test.)
540 */
541 if (must_be_leftjoin &&
542 (match_sjinfo == NULL ||
543 match_sjinfo->jointype != JOIN_LEFT ||
544 !match_sjinfo->lhs_strict))
545 return false; /* invalid join path */
546
547 /*
548 * We also have to check for constraints imposed by LATERAL references.
549 */
550 if (root->hasLateralRTEs)
551 {
552 bool lateral_fwd;
553 bool lateral_rev;
554 Relids join_lateral_rels;
555
556 /*
557 * The proposed rels could each contain lateral references to the
558 * other, in which case the join is impossible. If there are lateral
559 * references in just one direction, then the join has to be done with
560 * a nestloop with the lateral referencer on the inside. If the join
561 * matches an SJ that cannot be implemented by such a nestloop, the
562 * join is impossible.
563 *
564 * Also, if the lateral reference is only indirect, we should reject
565 * the join; whatever rel(s) the reference chain goes through must be
566 * joined to first.
567 */
568 lateral_fwd = bms_overlap(rel1->relids, rel2->lateral_relids);
569 lateral_rev = bms_overlap(rel2->relids, rel1->lateral_relids);
570 if (lateral_fwd && lateral_rev)
571 return false; /* have lateral refs in both directions */
572 if (lateral_fwd)
573 {
574 /* has to be implemented as nestloop with rel1 on left */
575 if (match_sjinfo &&
576 (reversed ||
577 unique_ified ||
578 match_sjinfo->jointype == JOIN_FULL))
579 return false; /* not implementable as nestloop */
580 /* check there is a direct reference from rel2 to rel1 */
581 if (!bms_overlap(rel1->relids, rel2->direct_lateral_relids))
582 return false; /* only indirect refs, so reject */
583 }
584 else if (lateral_rev)
585 {
586 /* has to be implemented as nestloop with rel2 on left */
587 if (match_sjinfo &&
588 (!reversed ||
589 unique_ified ||
590 match_sjinfo->jointype == JOIN_FULL))
591 return false; /* not implementable as nestloop */
592 /* check there is a direct reference from rel1 to rel2 */
593 if (!bms_overlap(rel2->relids, rel1->direct_lateral_relids))
594 return false; /* only indirect refs, so reject */
595 }
596
597 /*
598 * LATERAL references could also cause problems later on if we accept
599 * this join: if the join's minimum parameterization includes any rels
600 * that would have to be on the inside of an outer join with this join
601 * rel, then it's never going to be possible to build the complete
602 * query using this join. We should reject this join not only because
603 * it'll save work, but because if we don't, the clauseless-join
604 * heuristics might think that legality of this join means that some
605 * other join rel need not be formed, and that could lead to failure
606 * to find any plan at all. We have to consider not only rels that
607 * are directly on the inner side of an OJ with the joinrel, but also
608 * ones that are indirectly so, so search to find all such rels.
609 */
610 join_lateral_rels = min_join_parameterization(root, joinrelids,
611 rel1, rel2);
612 if (join_lateral_rels)
613 {
614 Relids join_plus_rhs = bms_copy(joinrelids);
615 bool more;
616
617 do
618 {
619 more = false;
620 foreach(l, root->join_info_list)
621 {
622 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
623
624 /* ignore full joins --- their ordering is predetermined */
625 if (sjinfo->jointype == JOIN_FULL)
626 continue;
627
628 if (bms_overlap(sjinfo->min_lefthand, join_plus_rhs) &&
629 !bms_is_subset(sjinfo->min_righthand, join_plus_rhs))
630 {
631 join_plus_rhs = bms_add_members(join_plus_rhs,
632 sjinfo->min_righthand);
633 more = true;
634 }
635 }
636 } while (more);
637 if (bms_overlap(join_plus_rhs, join_lateral_rels))
638 return false; /* will not be able to join to some RHS rel */
639 }
640 }
641
642 /* Otherwise, it's a valid join */
643 *sjinfo_p = match_sjinfo;
644 *reversed_p = reversed;
645 return true;
646}
647
648/*
649 * init_dummy_sjinfo
650 * Populate the given SpecialJoinInfo for a plain inner join between the
651 * left and right relations specified by left_relids and right_relids
652 * respectively.
653 *
654 * Normally, an inner join does not have a SpecialJoinInfo node associated with
655 * it. But some functions involved in join planning require one containing at
656 * least the information of which relations are being joined. So we initialize
657 * that information here.
658 */
659void
660 init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids,
661 Relids right_relids)
662{
663 sjinfo->type = T_SpecialJoinInfo;
664 sjinfo->min_lefthand = left_relids;
665 sjinfo->min_righthand = right_relids;
666 sjinfo->syn_lefthand = left_relids;
667 sjinfo->syn_righthand = right_relids;
668 sjinfo->jointype = JOIN_INNER;
669 sjinfo->ojrelid = 0;
670 sjinfo->commute_above_l = NULL;
671 sjinfo->commute_above_r = NULL;
672 sjinfo->commute_below_l = NULL;
673 sjinfo->commute_below_r = NULL;
674 /* we don't bother trying to make the remaining fields valid */
675 sjinfo->lhs_strict = false;
676 sjinfo->semi_can_btree = false;
677 sjinfo->semi_can_hash = false;
678 sjinfo->semi_operators = NIL;
679 sjinfo->semi_rhs_exprs = NIL;
680}
681
682/*
683 * make_join_rel
684 * Find or create a join RelOptInfo that represents the join of
685 * the two given rels, and add to it path information for paths
686 * created with the two rels as outer and inner rel.
687 * (The join rel may already contain paths generated from other
688 * pairs of rels that add up to the same set of base rels.)
689 *
690 * NB: will return NULL if attempted join is not valid. This can happen
691 * when working with outer joins, or with IN or EXISTS clauses that have been
692 * turned into joins.
693 */
694RelOptInfo *
695 make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
696{
697 Relids joinrelids;
698 SpecialJoinInfo *sjinfo;
699 bool reversed;
700 List *pushed_down_joins = NIL;
701 SpecialJoinInfo sjinfo_data;
702 RelOptInfo *joinrel;
703 List *restrictlist;
704
705 /* We should never try to join two overlapping sets of rels. */
706 Assert(!bms_overlap(rel1->relids, rel2->relids));
707
708 /* Construct Relids set that identifies the joinrel (without OJ as yet). */
709 joinrelids = bms_union(rel1->relids, rel2->relids);
710
711 /* Check validity and determine join type. */
712 if (!join_is_legal(root, rel1, rel2, joinrelids,
713 &sjinfo, &reversed))
714 {
715 /* invalid join path */
716 bms_free(joinrelids);
717 return NULL;
718 }
719
720 /*
721 * Add outer join relid(s) to form the canonical relids. Any added outer
722 * joins besides sjinfo itself are appended to pushed_down_joins.
723 */
724 joinrelids = add_outer_joins_to_relids(root, joinrelids, sjinfo,
725 &pushed_down_joins);
726
727 /* Swap rels if needed to match the join info. */
728 if (reversed)
729 {
730 RelOptInfo *trel = rel1;
731
732 rel1 = rel2;
733 rel2 = trel;
734 }
735
736 /*
737 * If it's a plain inner join, then we won't have found anything in
738 * join_info_list. Make up a SpecialJoinInfo so that selectivity
739 * estimation functions will know what's being joined.
740 */
741 if (sjinfo == NULL)
742 {
743 sjinfo = &sjinfo_data;
744 init_dummy_sjinfo(sjinfo, rel1->relids, rel2->relids);
745 }
746
747 /*
748 * Find or build the join RelOptInfo, and compute the restrictlist that
749 * goes with this particular joining.
750 */
751 joinrel = build_join_rel(root, joinrelids, rel1, rel2,
752 sjinfo, pushed_down_joins,
753 &restrictlist);
754
755 /*
756 * If we've already proven this join is empty, we needn't consider any
757 * more paths for it.
758 */
759 if (is_dummy_rel(joinrel))
760 {
761 bms_free(joinrelids);
762 return joinrel;
763 }
764
765 /* Add paths to the join relation. */
766 populate_joinrel_with_paths(root, rel1, rel2, joinrel, sjinfo,
767 restrictlist);
768
769 bms_free(joinrelids);
770
771 return joinrel;
772}
773
774/*
775 * add_outer_joins_to_relids
776 * Add relids to input_relids to represent any outer joins that will be
777 * calculated at this join.
778 *
779 * input_relids is the union of the relid sets of the two input relations.
780 * Note that we modify this in-place and return it; caller must bms_copy()
781 * it first, if a separate value is desired.
782 *
783 * sjinfo represents the join being performed.
784 *
785 * If the current join completes the calculation of any outer joins that
786 * have been pushed down per outer-join identity 3, those relids will be
787 * added to the result along with sjinfo's own relid. If pushed_down_joins
788 * is not NULL, then also the SpecialJoinInfos for such added outer joins will
789 * be appended to *pushed_down_joins (so caller must initialize it to NIL).
790 */
791Relids
792 add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids,
793 SpecialJoinInfo *sjinfo,
794 List **pushed_down_joins)
795{
796 /* Nothing to do if this isn't an outer join with an assigned relid. */
797 if (sjinfo == NULL || sjinfo->ojrelid == 0)
798 return input_relids;
799
800 /*
801 * If it's not a left join, we have no rules that would permit executing
802 * it in non-syntactic order, so just form the syntactic relid set. (This
803 * is just a quick-exit test; we'd come to the same conclusion anyway,
804 * since its commute_below_l and commute_above_l sets must be empty.)
805 */
806 if (sjinfo->jointype != JOIN_LEFT)
807 return bms_add_member(input_relids, sjinfo->ojrelid);
808
809 /*
810 * We cannot add the OJ relid if this join has been pushed into the RHS of
811 * a syntactically-lower left join per OJ identity 3. (If it has, then we
812 * cannot claim that its outputs represent the final state of its RHS.)
813 * There will not be any other OJs that can be added either, so we're
814 * done.
815 */
816 if (!bms_is_subset(sjinfo->commute_below_l, input_relids))
817 return input_relids;
818
819 /* OK to add OJ's own relid */
820 input_relids = bms_add_member(input_relids, sjinfo->ojrelid);
821
822 /*
823 * Contrariwise, if we are now forming the final result of such a commuted
824 * pair of OJs, it's time to add the relid(s) of the pushed-down join(s).
825 * We can skip this if this join was never a candidate to be pushed up.
826 */
827 if (sjinfo->commute_above_l)
828 {
829 Relids commute_above_rels = bms_copy(sjinfo->commute_above_l);
830 ListCell *lc;
831
832 /*
833 * The current join could complete the nulling of more than one
834 * pushed-down join, so we have to examine all the SpecialJoinInfos.
835 * Because join_info_list was built in bottom-up order, it's
836 * sufficient to traverse it once: an ojrelid we add in one loop
837 * iteration would not have affected decisions of earlier iterations.
838 */
839 foreach(lc, root->join_info_list)
840 {
841 SpecialJoinInfo *othersj = (SpecialJoinInfo *) lfirst(lc);
842
843 if (othersj == sjinfo ||
844 othersj->ojrelid == 0 || othersj->jointype != JOIN_LEFT)
845 continue; /* definitely not interesting */
846
847 if (!bms_is_member(othersj->ojrelid, commute_above_rels))
848 continue;
849
850 /* Add it if not already present but conditions now satisfied */
851 if (!bms_is_member(othersj->ojrelid, input_relids) &&
852 bms_is_subset(othersj->min_lefthand, input_relids) &&
853 bms_is_subset(othersj->min_righthand, input_relids) &&
854 bms_is_subset(othersj->commute_below_l, input_relids))
855 {
856 input_relids = bms_add_member(input_relids, othersj->ojrelid);
857 /* report such pushed down outer joins, if asked */
858 if (pushed_down_joins != NULL)
859 *pushed_down_joins = lappend(*pushed_down_joins, othersj);
860
861 /*
862 * We must also check any joins that othersj potentially
863 * commutes with. They likewise must appear later in
864 * join_info_list than othersj itself, so we can visit them
865 * later in this loop.
866 */
867 commute_above_rels = bms_add_members(commute_above_rels,
868 othersj->commute_above_l);
869 }
870 }
871 }
872
873 return input_relids;
874}
875
876/*
877 * populate_joinrel_with_paths
878 * Add paths to the given joinrel for given pair of joining relations. The
879 * SpecialJoinInfo provides details about the join and the restrictlist
880 * contains the join clauses and the other clauses applicable for given pair
881 * of the joining relations.
882 */
883static void
884 populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1,
885 RelOptInfo *rel2, RelOptInfo *joinrel,
886 SpecialJoinInfo *sjinfo, List *restrictlist)
887{
888 RelOptInfo *unique_rel2;
889
890 /*
891 * Consider paths using each rel as both outer and inner. Depending on
892 * the join type, a provably empty outer or inner rel might mean the join
893 * is provably empty too; in which case throw away any previously computed
894 * paths and mark the join as dummy. (We do it this way since it's
895 * conceivable that dummy-ness of a multi-element join might only be
896 * noticeable for certain construction paths.)
897 *
898 * Also, a provably constant-false join restriction typically means that
899 * we can skip evaluating one or both sides of the join. We do this by
900 * marking the appropriate rel as dummy. For outer joins, a
901 * constant-false restriction that is pushed down still means the whole
902 * join is dummy, while a non-pushed-down one means that no inner rows
903 * will join so we can treat the inner rel as dummy.
904 *
905 * We need only consider the jointypes that appear in join_info_list, plus
906 * JOIN_INNER.
907 */
908 switch (sjinfo->jointype)
909 {
910 case JOIN_INNER:
911 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
912 restriction_is_constant_false(restrictlist, joinrel, false))
913 {
914 mark_dummy_rel(joinrel);
915 break;
916 }
917 add_paths_to_joinrel(root, joinrel, rel1, rel2,
918 JOIN_INNER, sjinfo,
919 restrictlist);
920 add_paths_to_joinrel(root, joinrel, rel2, rel1,
921 JOIN_INNER, sjinfo,
922 restrictlist);
923 break;
924 case JOIN_LEFT:
925 if (is_dummy_rel(rel1) ||
926 restriction_is_constant_false(restrictlist, joinrel, true))
927 {
928 mark_dummy_rel(joinrel);
929 break;
930 }
931 if (restriction_is_constant_false(restrictlist, joinrel, false) &&
932 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
933 mark_dummy_rel(rel2);
934 add_paths_to_joinrel(root, joinrel, rel1, rel2,
935 JOIN_LEFT, sjinfo,
936 restrictlist);
937 add_paths_to_joinrel(root, joinrel, rel2, rel1,
938 JOIN_RIGHT, sjinfo,
939 restrictlist);
940 break;
941 case JOIN_FULL:
942 if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
943 restriction_is_constant_false(restrictlist, joinrel, true))
944 {
945 mark_dummy_rel(joinrel);
946 break;
947 }
948 add_paths_to_joinrel(root, joinrel, rel1, rel2,
949 JOIN_FULL, sjinfo,
950 restrictlist);
951 add_paths_to_joinrel(root, joinrel, rel2, rel1,
952 JOIN_FULL, sjinfo,
953 restrictlist);
954
955 /*
956 * If there are join quals that aren't mergeable or hashable, we
957 * may not be able to build any valid plan. Complain here so that
958 * we can give a somewhat-useful error message. (Since we have no
959 * flexibility of planning for a full join, there's no chance of
960 * succeeding later with another pair of input rels.)
961 */
962 if (joinrel->pathlist == NIL)
963 ereport(ERROR,
964 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
965 errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
966 break;
967 case JOIN_SEMI:
968
969 /*
970 * We might have a normal semijoin, or a case where we don't have
971 * enough rels to do the semijoin but can unique-ify the RHS and
972 * then do an innerjoin (see comments in join_is_legal). In the
973 * latter case we can't apply JOIN_SEMI joining.
974 */
975 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
976 bms_is_subset(sjinfo->min_righthand, rel2->relids))
977 {
978 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
979 restriction_is_constant_false(restrictlist, joinrel, false))
980 {
981 mark_dummy_rel(joinrel);
982 break;
983 }
984 add_paths_to_joinrel(root, joinrel, rel1, rel2,
985 JOIN_SEMI, sjinfo,
986 restrictlist);
987 add_paths_to_joinrel(root, joinrel, rel2, rel1,
988 JOIN_RIGHT_SEMI, sjinfo,
989 restrictlist);
990 }
991
992 /*
993 * If we know how to unique-ify the RHS and one input rel is
994 * exactly the RHS (not a superset) we can consider unique-ifying
995 * it and then doing a regular join. (The create_unique_paths
996 * check here is probably redundant with what join_is_legal did,
997 * but if so the check is cheap because it's cached. So test
998 * anyway to be sure.)
999 */
1000 if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
1001 (unique_rel2 = create_unique_paths(root, rel2, sjinfo)) != NULL)
1002 {
1003 if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
1004 restriction_is_constant_false(restrictlist, joinrel, false))
1005 {
1006 mark_dummy_rel(joinrel);
1007 break;
1008 }
1009 add_paths_to_joinrel(root, joinrel, rel1, unique_rel2,
1010 JOIN_UNIQUE_INNER, sjinfo,
1011 restrictlist);
1012 add_paths_to_joinrel(root, joinrel, unique_rel2, rel1,
1013 JOIN_UNIQUE_OUTER, sjinfo,
1014 restrictlist);
1015 }
1016 break;
1017 case JOIN_ANTI:
1018 if (is_dummy_rel(rel1) ||
1019 restriction_is_constant_false(restrictlist, joinrel, true))
1020 {
1021 mark_dummy_rel(joinrel);
1022 break;
1023 }
1024 if (restriction_is_constant_false(restrictlist, joinrel, false) &&
1025 bms_is_subset(rel2->relids, sjinfo->syn_righthand))
1026 mark_dummy_rel(rel2);
1027 add_paths_to_joinrel(root, joinrel, rel1, rel2,
1028 JOIN_ANTI, sjinfo,
1029 restrictlist);
1030 add_paths_to_joinrel(root, joinrel, rel2, rel1,
1031 JOIN_RIGHT_ANTI, sjinfo,
1032 restrictlist);
1033 break;
1034 default:
1035 /* other values not expected here */
1036 elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
1037 break;
1038 }
1039
1040 /* Apply partitionwise join technique, if possible. */
1041 try_partitionwise_join(root, rel1, rel2, joinrel, sjinfo, restrictlist);
1042}
1043
1044
1045/*
1046 * have_join_order_restriction
1047 * Detect whether the two relations should be joined to satisfy
1048 * a join-order restriction arising from special or lateral joins.
1049 *
1050 * In practice this is always used with have_relevant_joinclause(), and so
1051 * could be merged with that function, but it seems clearer to separate the
1052 * two concerns. We need this test because there are degenerate cases where
1053 * a clauseless join must be performed to satisfy join-order restrictions.
1054 * Also, if one rel has a lateral reference to the other, or both are needed
1055 * to compute some PHV, we should consider joining them even if the join would
1056 * be clauseless.
1057 *
1058 * Note: this is only a problem if one side of a degenerate outer join
1059 * contains multiple rels, or a clauseless join is required within an
1060 * IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
1061 * join_search_one_level(). We could dispense with this test if we were
1062 * willing to try bushy plans in the "last ditch" case, but that seems much
1063 * less efficient.
1064 */
1065bool
1066 have_join_order_restriction(PlannerInfo *root,
1067 RelOptInfo *rel1, RelOptInfo *rel2)
1068{
1069 bool result = false;
1070 ListCell *l;
1071
1072 /*
1073 * If either side has a direct lateral reference to the other, attempt the
1074 * join regardless of outer-join considerations.
1075 */
1076 if (bms_overlap(rel1->relids, rel2->direct_lateral_relids) ||
1077 bms_overlap(rel2->relids, rel1->direct_lateral_relids))
1078 return true;
1079
1080 /*
1081 * Likewise, if both rels are needed to compute some PlaceHolderVar,
1082 * attempt the join regardless of outer-join considerations. (This is not
1083 * very desirable, because a PHV with a large eval_at set will cause a lot
1084 * of probably-useless joins to be considered, but failing to do this can
1085 * cause us to fail to construct a plan at all.)
1086 */
1087 foreach(l, root->placeholder_list)
1088 {
1089 PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
1090
1091 if (bms_is_subset(rel1->relids, phinfo->ph_eval_at) &&
1092 bms_is_subset(rel2->relids, phinfo->ph_eval_at))
1093 return true;
1094 }
1095
1096 /*
1097 * It's possible that the rels correspond to the left and right sides of a
1098 * degenerate outer join, that is, one with no joinclause mentioning the
1099 * non-nullable side; in which case we should force the join to occur.
1100 *
1101 * Also, the two rels could represent a clauseless join that has to be
1102 * completed to build up the LHS or RHS of an outer join.
1103 */
1104 foreach(l, root->join_info_list)
1105 {
1106 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
1107
1108 /* ignore full joins --- other mechanisms handle them */
1109 if (sjinfo->jointype == JOIN_FULL)
1110 continue;
1111
1112 /* Can we perform the SJ with these rels? */
1113 if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
1114 bms_is_subset(sjinfo->min_righthand, rel2->relids))
1115 {
1116 result = true;
1117 break;
1118 }
1119 if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
1120 bms_is_subset(sjinfo->min_righthand, rel1->relids))
1121 {
1122 result = true;
1123 break;
1124 }
1125
1126 /*
1127 * Might we need to join these rels to complete the RHS? We have to
1128 * use "overlap" tests since either rel might include a lower SJ that
1129 * has been proven to commute with this one.
1130 */
1131 if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
1132 bms_overlap(sjinfo->min_righthand, rel2->relids))
1133 {
1134 result = true;
1135 break;
1136 }
1137
1138 /* Likewise for the LHS. */
1139 if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
1140 bms_overlap(sjinfo->min_lefthand, rel2->relids))
1141 {
1142 result = true;
1143 break;
1144 }
1145 }
1146
1147 /*
1148 * We do not force the join to occur if either input rel can legally be
1149 * joined to anything else using joinclauses. This essentially means that
1150 * clauseless bushy joins are put off as long as possible. The reason is
1151 * that when there is a join order restriction high up in the join tree
1152 * (that is, with many rels inside the LHS or RHS), we would otherwise
1153 * expend lots of effort considering very stupid join combinations within
1154 * its LHS or RHS.
1155 */
1156 if (result)
1157 {
1158 if (has_legal_joinclause(root, rel1) ||
1159 has_legal_joinclause(root, rel2))
1160 result = false;
1161 }
1162
1163 return result;
1164}
1165
1166
1167/*
1168 * has_join_restriction
1169 * Detect whether the specified relation has join-order restrictions,
1170 * due to being inside an outer join or an IN (sub-SELECT),
1171 * or participating in any LATERAL references or multi-rel PHVs.
1172 *
1173 * Essentially, this tests whether have_join_order_restriction() could
1174 * succeed with this rel and some other one. It's OK if we sometimes
1175 * say "true" incorrectly. (Therefore, we don't bother with the relatively
1176 * expensive has_legal_joinclause test.)
1177 */
1178static bool
1179 has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
1180{
1181 ListCell *l;
1182
1183 if (rel->lateral_relids != NULL || rel->lateral_referencers != NULL)
1184 return true;
1185
1186 foreach(l, root->placeholder_list)
1187 {
1188 PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(l);
1189
1190 if (bms_is_subset(rel->relids, phinfo->ph_eval_at) &&
1191 !bms_equal(rel->relids, phinfo->ph_eval_at))
1192 return true;
1193 }
1194
1195 foreach(l, root->join_info_list)
1196 {
1197 SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
1198
1199 /* ignore full joins --- other mechanisms preserve their ordering */
1200 if (sjinfo->jointype == JOIN_FULL)
1201 continue;
1202
1203 /* ignore if SJ is already contained in rel */
1204 if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
1205 bms_is_subset(sjinfo->min_righthand, rel->relids))
1206 continue;
1207
1208 /* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
1209 if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
1210 bms_overlap(sjinfo->min_righthand, rel->relids))
1211 return true;
1212 }
1213
1214 return false;
1215}
1216
1217
1218/*
1219 * has_legal_joinclause
1220 * Detect whether the specified relation can legally be joined
1221 * to any other rels using join clauses.
1222 *
1223 * We consider only joins to single other relations in the current
1224 * initial_rels list. This is sufficient to get a "true" result in most real
1225 * queries, and an occasional erroneous "false" will only cost a bit more
1226 * planning time. The reason for this limitation is that considering joins to
1227 * other joins would require proving that the other join rel can legally be
1228 * formed, which seems like too much trouble for something that's only a
1229 * heuristic to save planning time. (Note: we must look at initial_rels
1230 * and not all of the query, since when we are planning a sub-joinlist we
1231 * may be forced to make clauseless joins within initial_rels even though
1232 * there are join clauses linking to other parts of the query.)
1233 */
1234static bool
1235 has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
1236{
1237 ListCell *lc;
1238
1239 foreach(lc, root->initial_rels)
1240 {
1241 RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
1242
1243 /* ignore rels that are already in "rel" */
1244 if (bms_overlap(rel->relids, rel2->relids))
1245 continue;
1246
1247 if (have_relevant_joinclause(root, rel, rel2))
1248 {
1249 Relids joinrelids;
1250 SpecialJoinInfo *sjinfo;
1251 bool reversed;
1252
1253 /* join_is_legal needs relids of the union */
1254 joinrelids = bms_union(rel->relids, rel2->relids);
1255
1256 if (join_is_legal(root, rel, rel2, joinrelids,
1257 &sjinfo, &reversed))
1258 {
1259 /* Yes, this will work */
1260 bms_free(joinrelids);
1261 return true;
1262 }
1263
1264 bms_free(joinrelids);
1265 }
1266 }
1267
1268 return false;
1269}
1270
1271
1272/*
1273 * is_dummy_rel --- has relation been proven empty?
1274 */
1275bool
1276 is_dummy_rel(RelOptInfo *rel)
1277{
1278 Path *path;
1279
1280 /*
1281 * A rel that is known dummy will have just one path that is a childless
1282 * Append. (Even if somehow it has more paths, a childless Append will
1283 * have cost zero and hence should be at the front of the pathlist.)
1284 */
1285 if (rel->pathlist == NIL)
1286 return false;
1287 path = (Path *) linitial(rel->pathlist);
1288
1289 /*
1290 * Initially, a dummy path will just be a childless Append. But in later
1291 * planning stages we might stick a ProjectSetPath and/or ProjectionPath
1292 * on top, since Append can't project. Rather than make assumptions about
1293 * which combinations can occur, just descend through whatever we find.
1294 */
1295 for (;;)
1296 {
1297 if (IsA(path, ProjectionPath))
1298 path = ((ProjectionPath *) path)->subpath;
1299 else if (IsA(path, ProjectSetPath))
1300 path = ((ProjectSetPath *) path)->subpath;
1301 else
1302 break;
1303 }
1304 if (IS_DUMMY_APPEND(path))
1305 return true;
1306 return false;
1307}
1308
1309/*
1310 * Mark a relation as proven empty.
1311 *
1312 * During GEQO planning, this can get invoked more than once on the same
1313 * baserel struct, so it's worth checking to see if the rel is already marked
1314 * dummy.
1315 *
1316 * Also, when called during GEQO join planning, we are in a short-lived
1317 * memory context. We must make sure that the dummy path attached to a
1318 * baserel survives the GEQO cycle, else the baserel is trashed for future
1319 * GEQO cycles. On the other hand, when we are marking a joinrel during GEQO,
1320 * we don't want the dummy path to clutter the main planning context. Upshot
1321 * is that the best solution is to explicitly make the dummy path in the same
1322 * context the given RelOptInfo is in.
1323 */
1324void
1325 mark_dummy_rel(RelOptInfo *rel)
1326{
1327 MemoryContext oldcontext;
1328
1329 /* Already marked? */
1330 if (is_dummy_rel(rel))
1331 return;
1332
1333 /* No, so choose correct context to make the dummy path in */
1334 oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
1335
1336 /* Set dummy size estimate */
1337 rel->rows = 0;
1338
1339 /* Evict any previously chosen paths */
1340 rel->pathlist = NIL;
1341 rel->partial_pathlist = NIL;
1342
1343 /* Set up the dummy path */
1344 add_path(rel, (Path *) create_append_path(NULL, rel, NIL, NIL,
1345 NIL, rel->lateral_relids,
1346 0, false, -1));
1347
1348 /* Set or update cheapest_total_path and related fields */
1349 set_cheapest(rel);
1350
1351 MemoryContextSwitchTo(oldcontext);
1352}
1353
1354
1355/*
1356 * restriction_is_constant_false --- is a restrictlist just FALSE?
1357 *
1358 * In cases where a qual is provably constant FALSE, eval_const_expressions
1359 * will generally have thrown away anything that's ANDed with it. In outer
1360 * join situations this will leave us computing cartesian products only to
1361 * decide there's no match for an outer row, which is pretty stupid. So,
1362 * we need to detect the case.
1363 *
1364 * If only_pushed_down is true, then consider only quals that are pushed-down
1365 * from the point of view of the joinrel.
1366 */
1367static bool
1368 restriction_is_constant_false(List *restrictlist,
1369 RelOptInfo *joinrel,
1370 bool only_pushed_down)
1371{
1372 ListCell *lc;
1373
1374 /*
1375 * Despite the above comment, the restriction list we see here might
1376 * possibly have other members besides the FALSE constant, since other
1377 * quals could get "pushed down" to the outer join level. So we check
1378 * each member of the list.
1379 */
1380 foreach(lc, restrictlist)
1381 {
1382 RestrictInfo *rinfo = lfirst_node(RestrictInfo, lc);
1383
1384 if (only_pushed_down && !RINFO_IS_PUSHED_DOWN(rinfo, joinrel->relids))
1385 continue;
1386
1387 if (rinfo->clause && IsA(rinfo->clause, Const))
1388 {
1389 Const *con = (Const *) rinfo->clause;
1390
1391 /* constant NULL is as good as constant FALSE for our purposes */
1392 if (con->constisnull)
1393 return true;
1394 if (!DatumGetBool(con->constvalue))
1395 return true;
1396 }
1397 }
1398 return false;
1399}
1400
1401/*
1402 * Assess whether join between given two partitioned relations can be broken
1403 * down into joins between matching partitions; a technique called
1404 * "partitionwise join"
1405 *
1406 * Partitionwise join is possible when a. Joining relations have same
1407 * partitioning scheme b. There exists an equi-join between the partition keys
1408 * of the two relations.
1409 *
1410 * Partitionwise join is planned as follows (details: optimizer/README.)
1411 *
1412 * 1. Create the RelOptInfos for joins between matching partitions i.e
1413 * child-joins and add paths to them.
1414 *
1415 * 2. Construct Append or MergeAppend paths across the set of child joins.
1416 * This second phase is implemented by generate_partitionwise_join_paths().
1417 *
1418 * The RelOptInfo, SpecialJoinInfo and restrictlist for each child join are
1419 * obtained by translating the respective parent join structures.
1420 */
1421static void
1422 try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
1423 RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo,
1424 List *parent_restrictlist)
1425{
1426 bool rel1_is_simple = IS_SIMPLE_REL(rel1);
1427 bool rel2_is_simple = IS_SIMPLE_REL(rel2);
1428 List *parts1 = NIL;
1429 List *parts2 = NIL;
1430 ListCell *lcr1 = NULL;
1431 ListCell *lcr2 = NULL;
1432 int cnt_parts;
1433
1434 /* Guard against stack overflow due to overly deep partition hierarchy. */
1435 check_stack_depth();
1436
1437 /* Nothing to do, if the join relation is not partitioned. */
1438 if (joinrel->part_scheme == NULL || joinrel->nparts == 0)
1439 return;
1440
1441 /* The join relation should have consider_partitionwise_join set. */
1442 Assert(joinrel->consider_partitionwise_join);
1443
1444 /*
1445 * We can not perform partitionwise join if either of the joining
1446 * relations is not partitioned.
1447 */
1448 if (!IS_PARTITIONED_REL(rel1) || !IS_PARTITIONED_REL(rel2))
1449 return;
1450
1451 Assert(REL_HAS_ALL_PART_PROPS(rel1) && REL_HAS_ALL_PART_PROPS(rel2));
1452
1453 /* The joining relations should have consider_partitionwise_join set. */
1454 Assert(rel1->consider_partitionwise_join &&
1455 rel2->consider_partitionwise_join);
1456
1457 /*
1458 * The partition scheme of the join relation should match that of the
1459 * joining relations.
1460 */
1461 Assert(joinrel->part_scheme == rel1->part_scheme &&
1462 joinrel->part_scheme == rel2->part_scheme);
1463
1464 Assert(!(joinrel->partbounds_merged && (joinrel->nparts <= 0)));
1465
1466 compute_partition_bounds(root, rel1, rel2, joinrel, parent_sjinfo,
1467 &parts1, &parts2);
1468
1469 if (joinrel->partbounds_merged)
1470 {
1471 lcr1 = list_head(parts1);
1472 lcr2 = list_head(parts2);
1473 }
1474
1475 /*
1476 * Create child-join relations for this partitioned join, if those don't
1477 * exist. Add paths to child-joins for a pair of child relations
1478 * corresponding to the given pair of parent relations.
1479 */
1480 for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
1481 {
1482 RelOptInfo *child_rel1;
1483 RelOptInfo *child_rel2;
1484 bool rel1_empty;
1485 bool rel2_empty;
1486 SpecialJoinInfo *child_sjinfo;
1487 List *child_restrictlist;
1488 RelOptInfo *child_joinrel;
1489 AppendRelInfo **appinfos;
1490 int nappinfos;
1491 Relids child_relids;
1492
1493 if (joinrel->partbounds_merged)
1494 {
1495 child_rel1 = lfirst_node(RelOptInfo, lcr1);
1496 child_rel2 = lfirst_node(RelOptInfo, lcr2);
1497 lcr1 = lnext(parts1, lcr1);
1498 lcr2 = lnext(parts2, lcr2);
1499 }
1500 else
1501 {
1502 child_rel1 = rel1->part_rels[cnt_parts];
1503 child_rel2 = rel2->part_rels[cnt_parts];
1504 }
1505
1506 rel1_empty = (child_rel1 == NULL || IS_DUMMY_REL(child_rel1));
1507 rel2_empty = (child_rel2 == NULL || IS_DUMMY_REL(child_rel2));
1508
1509 /*
1510 * Check for cases where we can prove that this segment of the join
1511 * returns no rows, due to one or both inputs being empty (including
1512 * inputs that have been pruned away entirely). If so just ignore it.
1513 * These rules are equivalent to populate_joinrel_with_paths's rules
1514 * for dummy input relations.
1515 */
1516 switch (parent_sjinfo->jointype)
1517 {
1518 case JOIN_INNER:
1519 case JOIN_SEMI:
1520 if (rel1_empty || rel2_empty)
1521 continue; /* ignore this join segment */
1522 break;
1523 case JOIN_LEFT:
1524 case JOIN_ANTI:
1525 if (rel1_empty)
1526 continue; /* ignore this join segment */
1527 break;
1528 case JOIN_FULL:
1529 if (rel1_empty && rel2_empty)
1530 continue; /* ignore this join segment */
1531 break;
1532 default:
1533 /* other values not expected here */
1534 elog(ERROR, "unrecognized join type: %d",
1535 (int) parent_sjinfo->jointype);
1536 break;
1537 }
1538
1539 /*
1540 * If a child has been pruned entirely then we can't generate paths
1541 * for it, so we have to reject partitionwise joining unless we were
1542 * able to eliminate this partition above.
1543 */
1544 if (child_rel1 == NULL || child_rel2 == NULL)
1545 {
1546 /*
1547 * Mark the joinrel as unpartitioned so that later functions treat
1548 * it correctly.
1549 */
1550 joinrel->nparts = 0;
1551 return;
1552 }
1553
1554 /*
1555 * If a leaf relation has consider_partitionwise_join=false, it means
1556 * that it's a dummy relation for which we skipped setting up tlist
1557 * expressions and adding EC members in set_append_rel_size(), so
1558 * again we have to fail here.
1559 */
1560 if (rel1_is_simple && !child_rel1->consider_partitionwise_join)
1561 {
1562 Assert(child_rel1->reloptkind == RELOPT_OTHER_MEMBER_REL);
1563 Assert(IS_DUMMY_REL(child_rel1));
1564 joinrel->nparts = 0;
1565 return;
1566 }
1567 if (rel2_is_simple && !child_rel2->consider_partitionwise_join)
1568 {
1569 Assert(child_rel2->reloptkind == RELOPT_OTHER_MEMBER_REL);
1570 Assert(IS_DUMMY_REL(child_rel2));
1571 joinrel->nparts = 0;
1572 return;
1573 }
1574
1575 /* We should never try to join two overlapping sets of rels. */
1576 Assert(!bms_overlap(child_rel1->relids, child_rel2->relids));
1577
1578 /*
1579 * Construct SpecialJoinInfo from parent join relations's
1580 * SpecialJoinInfo.
1581 */
1582 child_sjinfo = build_child_join_sjinfo(root, parent_sjinfo,
1583 child_rel1->relids,
1584 child_rel2->relids);
1585
1586 /* Find the AppendRelInfo structures */
1587 child_relids = bms_union(child_rel1->relids, child_rel2->relids);
1588 appinfos = find_appinfos_by_relids(root, child_relids,
1589 &nappinfos);
1590
1591 /*
1592 * Construct restrictions applicable to the child join from those
1593 * applicable to the parent join.
1594 */
1595 child_restrictlist =
1596 (List *) adjust_appendrel_attrs(root,
1597 (Node *) parent_restrictlist,
1598 nappinfos, appinfos);
1599
1600 /* Find or construct the child join's RelOptInfo */
1601 child_joinrel = joinrel->part_rels[cnt_parts];
1602 if (!child_joinrel)
1603 {
1604 child_joinrel = build_child_join_rel(root, child_rel1, child_rel2,
1605 joinrel, child_restrictlist,
1606 child_sjinfo, nappinfos, appinfos);
1607 joinrel->part_rels[cnt_parts] = child_joinrel;
1608 joinrel->live_parts = bms_add_member(joinrel->live_parts, cnt_parts);
1609 joinrel->all_partrels = bms_add_members(joinrel->all_partrels,
1610 child_joinrel->relids);
1611 }
1612
1613 /* Assert we got the right one */
1614 Assert(bms_equal(child_joinrel->relids,
1615 adjust_child_relids(joinrel->relids,
1616 nappinfos, appinfos)));
1617
1618 /* And make paths for the child join */
1619 populate_joinrel_with_paths(root, child_rel1, child_rel2,
1620 child_joinrel, child_sjinfo,
1621 child_restrictlist);
1622
1623 /*
1624 * When there are thousands of partitions involved, this loop will
1625 * accumulate a significant amount of memory usage from objects that
1626 * are only needed within the loop. Free these local objects eagerly
1627 * at the end of each iteration.
1628 */
1629 pfree(appinfos);
1630 bms_free(child_relids);
1631 free_child_join_sjinfo(child_sjinfo, parent_sjinfo);
1632 }
1633}
1634
1635/*
1636 * Construct the SpecialJoinInfo for a child-join by translating
1637 * SpecialJoinInfo for the join between parents. left_relids and right_relids
1638 * are the relids of left and right side of the join respectively.
1639 *
1640 * If translations are added to or removed from this function, consider
1641 * updating free_child_join_sjinfo() accordingly.
1642 */
1643static SpecialJoinInfo *
1644 build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo,
1645 Relids left_relids, Relids right_relids)
1646{
1647 SpecialJoinInfo *sjinfo = makeNode(SpecialJoinInfo);
1648 AppendRelInfo **left_appinfos;
1649 int left_nappinfos;
1650 AppendRelInfo **right_appinfos;
1651 int right_nappinfos;
1652
1653 /* Dummy SpecialJoinInfos can be created without any translation. */
1654 if (parent_sjinfo->jointype == JOIN_INNER)
1655 {
1656 Assert(parent_sjinfo->ojrelid == 0);
1657 init_dummy_sjinfo(sjinfo, left_relids, right_relids);
1658 return sjinfo;
1659 }
1660
1661 memcpy(sjinfo, parent_sjinfo, sizeof(SpecialJoinInfo));
1662 left_appinfos = find_appinfos_by_relids(root, left_relids,
1663 &left_nappinfos);
1664 right_appinfos = find_appinfos_by_relids(root, right_relids,
1665 &right_nappinfos);
1666
1667 sjinfo->min_lefthand = adjust_child_relids(sjinfo->min_lefthand,
1668 left_nappinfos, left_appinfos);
1669 sjinfo->min_righthand = adjust_child_relids(sjinfo->min_righthand,
1670 right_nappinfos,
1671 right_appinfos);
1672 sjinfo->syn_lefthand = adjust_child_relids(sjinfo->syn_lefthand,
1673 left_nappinfos, left_appinfos);
1674 sjinfo->syn_righthand = adjust_child_relids(sjinfo->syn_righthand,
1675 right_nappinfos,
1676 right_appinfos);
1677 /* outer-join relids need no adjustment */
1678 sjinfo->semi_rhs_exprs = (List *) adjust_appendrel_attrs(root,
1679 (Node *) sjinfo->semi_rhs_exprs,
1680 right_nappinfos,
1681 right_appinfos);
1682
1683 pfree(left_appinfos);
1684 pfree(right_appinfos);
1685
1686 return sjinfo;
1687}
1688
1689/*
1690 * free_child_join_sjinfo
1691 * Free memory consumed by a SpecialJoinInfo created by
1692 * build_child_join_sjinfo()
1693 *
1694 * Only members that are translated copies of their counterpart in the parent
1695 * SpecialJoinInfo are freed here.
1696 */
1697static void
1698 free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo,
1699 SpecialJoinInfo *parent_sjinfo)
1700{
1701 /*
1702 * Dummy SpecialJoinInfos of inner joins do not have any translated fields
1703 * and hence no fields that to be freed.
1704 */
1705 if (child_sjinfo->jointype != JOIN_INNER)
1706 {
1707 if (child_sjinfo->min_lefthand != parent_sjinfo->min_lefthand)
1708 bms_free(child_sjinfo->min_lefthand);
1709
1710 if (child_sjinfo->min_righthand != parent_sjinfo->min_righthand)
1711 bms_free(child_sjinfo->min_righthand);
1712
1713 if (child_sjinfo->syn_lefthand != parent_sjinfo->syn_lefthand)
1714 bms_free(child_sjinfo->syn_lefthand);
1715
1716 if (child_sjinfo->syn_righthand != parent_sjinfo->syn_righthand)
1717 bms_free(child_sjinfo->syn_righthand);
1718
1719 Assert(child_sjinfo->commute_above_l == parent_sjinfo->commute_above_l);
1720 Assert(child_sjinfo->commute_above_r == parent_sjinfo->commute_above_r);
1721 Assert(child_sjinfo->commute_below_l == parent_sjinfo->commute_below_l);
1722 Assert(child_sjinfo->commute_below_r == parent_sjinfo->commute_below_r);
1723
1724 Assert(child_sjinfo->semi_operators == parent_sjinfo->semi_operators);
1725
1726 /*
1727 * semi_rhs_exprs may in principle be freed, but a simple pfree() does
1728 * not suffice, so we leave it alone.
1729 */
1730 }
1731
1732 pfree(child_sjinfo);
1733}
1734
1735/*
1736 * compute_partition_bounds
1737 * Compute the partition bounds for a join rel from those for inputs
1738 */
1739static void
1740 compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1,
1741 RelOptInfo *rel2, RelOptInfo *joinrel,
1742 SpecialJoinInfo *parent_sjinfo,
1743 List **parts1, List **parts2)
1744{
1745 /*
1746 * If we don't have the partition bounds for the join rel yet, try to
1747 * compute those along with pairs of partitions to be joined.
1748 */
1749 if (joinrel->nparts == -1)
1750 {
1751 PartitionScheme part_scheme = joinrel->part_scheme;
1752 PartitionBoundInfo boundinfo = NULL;
1753 int nparts = 0;
1754
1755 Assert(joinrel->boundinfo == NULL);
1756 Assert(joinrel->part_rels == NULL);
1757
1758 /*
1759 * See if the partition bounds for inputs are exactly the same, in
1760 * which case we don't need to work hard: the join rel will have the
1761 * same partition bounds as inputs, and the partitions with the same
1762 * cardinal positions will form the pairs.
1763 *
1764 * Note: even in cases where one or both inputs have merged bounds, it
1765 * would be possible for both the bounds to be exactly the same, but
1766 * it seems unlikely to be worth the cycles to check.
1767 */
1768 if (!rel1->partbounds_merged &&
1769 !rel2->partbounds_merged &&
1770 rel1->nparts == rel2->nparts &&
1771 partition_bounds_equal(part_scheme->partnatts,
1772 part_scheme->parttyplen,
1773 part_scheme->parttypbyval,
1774 rel1->boundinfo, rel2->boundinfo))
1775 {
1776 boundinfo = rel1->boundinfo;
1777 nparts = rel1->nparts;
1778 }
1779 else
1780 {
1781 /* Try merging the partition bounds for inputs. */
1782 boundinfo = partition_bounds_merge(part_scheme->partnatts,
1783 part_scheme->partsupfunc,
1784 part_scheme->partcollation,
1785 rel1, rel2,
1786 parent_sjinfo->jointype,
1787 parts1, parts2);
1788 if (boundinfo == NULL)
1789 {
1790 joinrel->nparts = 0;
1791 return;
1792 }
1793 nparts = list_length(*parts1);
1794 joinrel->partbounds_merged = true;
1795 }
1796
1797 Assert(nparts > 0);
1798 joinrel->boundinfo = boundinfo;
1799 joinrel->nparts = nparts;
1800 joinrel->part_rels =
1801 (RelOptInfo **) palloc0(sizeof(RelOptInfo *) * nparts);
1802 }
1803 else
1804 {
1805 Assert(joinrel->nparts > 0);
1806 Assert(joinrel->boundinfo);
1807 Assert(joinrel->part_rels);
1808
1809 /*
1810 * If the join rel's partbounds_merged flag is true, it means inputs
1811 * are not guaranteed to have the same partition bounds, therefore we
1812 * can't assume that the partitions at the same cardinal positions
1813 * form the pairs; let get_matching_part_pairs() generate the pairs.
1814 * Otherwise, nothing to do since we can assume that.
1815 */
1816 if (joinrel->partbounds_merged)
1817 {
1818 get_matching_part_pairs(root, joinrel, rel1, rel2,
1819 parts1, parts2);
1820 Assert(list_length(*parts1) == joinrel->nparts);
1821 Assert(list_length(*parts2) == joinrel->nparts);
1822 }
1823 }
1824}
1825
1826/*
1827 * get_matching_part_pairs
1828 * Generate pairs of partitions to be joined from inputs
1829 */
1830static void
1831 get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel,
1832 RelOptInfo *rel1, RelOptInfo *rel2,
1833 List **parts1, List **parts2)
1834{
1835 bool rel1_is_simple = IS_SIMPLE_REL(rel1);
1836 bool rel2_is_simple = IS_SIMPLE_REL(rel2);
1837 int cnt_parts;
1838
1839 *parts1 = NIL;
1840 *parts2 = NIL;
1841
1842 for (cnt_parts = 0; cnt_parts < joinrel->nparts; cnt_parts++)
1843 {
1844 RelOptInfo *child_joinrel = joinrel->part_rels[cnt_parts];
1845 RelOptInfo *child_rel1;
1846 RelOptInfo *child_rel2;
1847 Relids child_relids1;
1848 Relids child_relids2;
1849
1850 /*
1851 * If this segment of the join is empty, it means that this segment
1852 * was ignored when previously creating child-join paths for it in
1853 * try_partitionwise_join() as it would not contribute to the join
1854 * result, due to one or both inputs being empty; add NULL to each of
1855 * the given lists so that this segment will be ignored again in that
1856 * function.
1857 */
1858 if (!child_joinrel)
1859 {
1860 *parts1 = lappend(*parts1, NULL);
1861 *parts2 = lappend(*parts2, NULL);
1862 continue;
1863 }
1864
1865 /*
1866 * Get a relids set of partition(s) involved in this join segment that
1867 * are from the rel1 side.
1868 */
1869 child_relids1 = bms_intersect(child_joinrel->relids,
1870 rel1->all_partrels);
1871 Assert(bms_num_members(child_relids1) == bms_num_members(rel1->relids));
1872
1873 /*
1874 * Get a child rel for rel1 with the relids. Note that we should have
1875 * the child rel even if rel1 is a join rel, because in that case the
1876 * partitions specified in the relids would have matching/overlapping
1877 * boundaries, so the specified partitions should be considered as
1878 * ones to be joined when planning partitionwise joins of rel1,
1879 * meaning that the child rel would have been built by the time we get
1880 * here.
1881 */
1882 if (rel1_is_simple)
1883 {
1884 int varno = bms_singleton_member(child_relids1);
1885
1886 child_rel1 = find_base_rel(root, varno);
1887 }
1888 else
1889 child_rel1 = find_join_rel(root, child_relids1);
1890 Assert(child_rel1);
1891
1892 /*
1893 * Get a relids set of partition(s) involved in this join segment that
1894 * are from the rel2 side.
1895 */
1896 child_relids2 = bms_intersect(child_joinrel->relids,
1897 rel2->all_partrels);
1898 Assert(bms_num_members(child_relids2) == bms_num_members(rel2->relids));
1899
1900 /*
1901 * Get a child rel for rel2 with the relids. See above comments.
1902 */
1903 if (rel2_is_simple)
1904 {
1905 int varno = bms_singleton_member(child_relids2);
1906
1907 child_rel2 = find_base_rel(root, varno);
1908 }
1909 else
1910 child_rel2 = find_join_rel(root, child_relids2);
1911 Assert(child_rel2);
1912
1913 /*
1914 * The join of rel1 and rel2 is legal, so is the join of the child
1915 * rels obtained above; add them to the given lists as a join pair
1916 * producing this join segment.
1917 */
1918 *parts1 = lappend(*parts1, child_rel1);
1919 *parts2 = lappend(*parts2, child_rel2);
1920 }
1921}
AppendRelInfo ** find_appinfos_by_relids(PlannerInfo *root, Relids relids, int *nappinfos)
Definition: appendinfo.c:753
Node * adjust_appendrel_attrs(PlannerInfo *root, Node *node, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:200
Relids adjust_child_relids(Relids relids, int nappinfos, AppendRelInfo **appinfos)
Definition: appendinfo.c:574
Bitmapset * bms_intersect(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:292
bool bms_equal(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:142
bool bms_is_subset(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:412
int bms_singleton_member(const Bitmapset *a)
Definition: bitmapset.c:672
void bms_free(Bitmapset *a)
Definition: bitmapset.c:239
int bms_num_members(const Bitmapset *a)
Definition: bitmapset.c:751
bool bms_is_member(int x, const Bitmapset *a)
Definition: bitmapset.c:510
Bitmapset * bms_add_member(Bitmapset *a, int x)
Definition: bitmapset.c:815
Bitmapset * bms_add_members(Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:917
Bitmapset * bms_union(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:251
bool bms_overlap(const Bitmapset *a, const Bitmapset *b)
Definition: bitmapset.c:582
Bitmapset * bms_copy(const Bitmapset *a)
Definition: bitmapset.c:122
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define ereport(elevel,...)
Definition: elog.h:150
Assert(PointerIsAligned(start, uint64))
if(TABLE==NULL||TABLE_index==NULL)
Definition: isn.c:81
bool have_relevant_joinclause(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joininfo.c:39
void add_paths_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *outerrel, RelOptInfo *innerrel, JoinType jointype, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: joinpath.c:124
static void populate_joinrel_with_paths(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *sjinfo, List *restrictlist)
Definition: joinrels.c:884
static void try_partitionwise_join(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo, List *parent_restrictlist)
Definition: joinrels.c:1422
static void make_rels_by_clauseless_joins(PlannerInfo *root, RelOptInfo *old_rel, List *other_rels)
Definition: joinrels.c:315
bool is_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1276
void join_search_one_level(PlannerInfo *root, int level)
Definition: joinrels.c:74
static bool restriction_is_constant_false(List *restrictlist, RelOptInfo *joinrel, bool only_pushed_down)
Definition: joinrels.c:1368
static void get_matching_part_pairs(PlannerInfo *root, RelOptInfo *joinrel, RelOptInfo *rel1, RelOptInfo *rel2, List **parts1, List **parts2)
Definition: joinrels.c:1831
RelOptInfo * make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joinrels.c:695
static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
Definition: joinrels.c:1235
static void compute_partition_bounds(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, RelOptInfo *joinrel, SpecialJoinInfo *parent_sjinfo, List **parts1, List **parts2)
Definition: joinrels.c:1740
Relids add_outer_joins_to_relids(PlannerInfo *root, Relids input_relids, SpecialJoinInfo *sjinfo, List **pushed_down_joins)
Definition: joinrels.c:792
static SpecialJoinInfo * build_child_join_sjinfo(PlannerInfo *root, SpecialJoinInfo *parent_sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:1644
void mark_dummy_rel(RelOptInfo *rel)
Definition: joinrels.c:1325
bool have_join_order_restriction(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
Definition: joinrels.c:1066
static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
Definition: joinrels.c:1179
void init_dummy_sjinfo(SpecialJoinInfo *sjinfo, Relids left_relids, Relids right_relids)
Definition: joinrels.c:660
static void free_child_join_sjinfo(SpecialJoinInfo *child_sjinfo, SpecialJoinInfo *parent_sjinfo)
Definition: joinrels.c:1698
static bool join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2, Relids joinrelids, SpecialJoinInfo **sjinfo_p, bool *reversed_p)
Definition: joinrels.c:351
static void make_rels_by_clause_joins(PlannerInfo *root, RelOptInfo *old_rel, List *other_rels, int first_rel_idx)
Definition: joinrels.c:281
List * lappend(List *list, void *datum)
Definition: list.c:339
Datum subpath(PG_FUNCTION_ARGS)
Definition: ltree_op.c:311
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc0(Size size)
Definition: mcxt.c:1395
MemoryContext GetMemoryChunkContext(void *pointer)
Definition: mcxt.c:753
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
#define makeNode(_type_)
Definition: nodes.h:161
@ JOIN_SEMI
Definition: nodes.h:317
@ JOIN_FULL
Definition: nodes.h:305
@ JOIN_INNER
Definition: nodes.h:303
@ JOIN_RIGHT
Definition: nodes.h:306
@ JOIN_RIGHT_SEMI
Definition: nodes.h:319
@ JOIN_LEFT
Definition: nodes.h:304
@ JOIN_UNIQUE_OUTER
Definition: nodes.h:326
@ JOIN_RIGHT_ANTI
Definition: nodes.h:320
@ JOIN_UNIQUE_INNER
Definition: nodes.h:327
@ JOIN_ANTI
Definition: nodes.h:318
static MemoryContext MemoryContextSwitchTo(MemoryContext context)
Definition: palloc.h:124
bool partition_bounds_equal(int partnatts, int16 *parttyplen, bool *parttypbyval, PartitionBoundInfo b1, PartitionBoundInfo b2)
Definition: partbounds.c:896
PartitionBoundInfo partition_bounds_merge(int partnatts, FmgrInfo *partsupfunc, Oid *partcollation, RelOptInfo *outer_rel, RelOptInfo *inner_rel, JoinType jointype, List **outer_parts, List **inner_parts)
Definition: partbounds.c:1119
void set_cheapest(RelOptInfo *parent_rel)
Definition: pathnode.c:269
AppendPath * create_append_path(PlannerInfo *root, RelOptInfo *rel, List *subpaths, List *partial_subpaths, List *pathkeys, Relids required_outer, int parallel_workers, bool parallel_aware, double rows)
Definition: pathnode.c:1299
void add_path(RelOptInfo *parent_rel, Path *new_path)
Definition: pathnode.c:460
#define IS_DUMMY_APPEND(p)
Definition: pathnodes.h:2097
#define RINFO_IS_PUSHED_DOWN(rinfo, joinrelids)
Definition: pathnodes.h:2861
#define IS_SIMPLE_REL(rel)
Definition: pathnodes.h:876
#define IS_DUMMY_REL(r)
Definition: pathnodes.h:2105
#define IS_PARTITIONED_REL(rel)
Definition: pathnodes.h:1104
#define REL_HAS_ALL_PART_PROPS(rel)
Definition: pathnodes.h:1112
@ RELOPT_OTHER_MEMBER_REL
Definition: pathnodes.h:866
#define lfirst(lc)
Definition: pg_list.h:172
#define lfirst_node(type, lc)
Definition: pg_list.h:176
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define foreach_current_index(var_or_cell)
Definition: pg_list.h:403
#define for_each_from(cell, lst, N)
Definition: pg_list.h:414
#define linitial(l)
Definition: pg_list.h:178
static ListCell * list_head(const List *l)
Definition: pg_list.h:128
static ListCell * lnext(const List *l, const ListCell *c)
Definition: pg_list.h:343
RelOptInfo * create_unique_paths(PlannerInfo *root, RelOptInfo *rel, SpecialJoinInfo *sjinfo)
Definition: planner.c:8291
static bool DatumGetBool(Datum X)
Definition: postgres.h:100
tree ctl root
Definition: radixtree.h:1857
RelOptInfo * find_base_rel(PlannerInfo *root, int relid)
Definition: relnode.c:416
RelOptInfo * build_child_join_rel(PlannerInfo *root, RelOptInfo *outer_rel, RelOptInfo *inner_rel, RelOptInfo *parent_joinrel, List *restrictlist, SpecialJoinInfo *sjinfo, int nappinfos, AppendRelInfo **appinfos)
Definition: relnode.c:886
Relids min_join_parameterization(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel)
Definition: relnode.c:1028
RelOptInfo * find_join_rel(PlannerInfo *root, Relids relids)
Definition: relnode.c:529
RelOptInfo * build_join_rel(PlannerInfo *root, Relids joinrelids, RelOptInfo *outer_rel, RelOptInfo *inner_rel, SpecialJoinInfo *sjinfo, List *pushed_down_joins, List **restrictlist_ptr)
Definition: relnode.c:667
void check_stack_depth(void)
Definition: stack_depth.c:95
Definition: primnodes.h:324
Definition: pg_list.h:54
Definition: nodes.h:135
int16 * parttyplen
Definition: pathnodes.h:618
bool * parttypbyval
Definition: pathnodes.h:619
struct FmgrInfo * partsupfunc
Definition: pathnodes.h:622
Oid * partcollation
Definition: pathnodes.h:615
Definition: pathnodes.h:1778
Relids ph_eval_at
Definition: pathnodes.h:3223
List * joininfo
Definition: pathnodes.h:1033
Relids relids
Definition: pathnodes.h:908
int nparts
Definition: pathnodes.h:1063
bool partbounds_merged
Definition: pathnodes.h:1067
Relids lateral_relids
Definition: pathnodes.h:949
List * pathlist
Definition: pathnodes.h:935
RelOptKind reloptkind
Definition: pathnodes.h:902
Relids lateral_referencers
Definition: pathnodes.h:974
Relids all_partrels
Definition: pathnodes.h:1083
Relids direct_lateral_relids
Definition: pathnodes.h:947
bool has_eclass_joins
Definition: pathnodes.h:1035
Bitmapset * live_parts
Definition: pathnodes.h:1081
bool consider_partitionwise_join
Definition: pathnodes.h:1041
List * partial_pathlist
Definition: pathnodes.h:937
Cardinality rows
Definition: pathnodes.h:914
Expr * clause
Definition: pathnodes.h:2704
Relids commute_above_r
Definition: pathnodes.h:3036
Relids syn_lefthand
Definition: pathnodes.h:3031
Relids min_righthand
Definition: pathnodes.h:3030
List * semi_rhs_exprs
Definition: pathnodes.h:3044
Relids commute_above_l
Definition: pathnodes.h:3035
JoinType jointype
Definition: pathnodes.h:3033
bool semi_can_btree
Definition: pathnodes.h:3041
Relids commute_below_l
Definition: pathnodes.h:3037
Relids min_lefthand
Definition: pathnodes.h:3029
Index ojrelid
Definition: pathnodes.h:3034
Relids syn_righthand
Definition: pathnodes.h:3032
Relids commute_below_r
Definition: pathnodes.h:3038
List * semi_operators
Definition: pathnodes.h:3043
bool lhs_strict
Definition: pathnodes.h:3039
bool semi_can_hash
Definition: pathnodes.h:3042
Definition: pg_list.h:46

AltStyle によって変換されたページ (->オリジナル) /