PostgreSQL Source Code: src/backend/catalog/dependency.c Source File

PostgreSQL Source Code git master
dependency.c
Go to the documentation of this file.
1/*-------------------------------------------------------------------------
2 *
3 * dependency.c
4 * Routines to support inter-object dependencies.
5 *
6 *
7 * Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
8 * Portions Copyright (c) 1994, Regents of the University of California
9 *
10 * IDENTIFICATION
11 * src/backend/catalog/dependency.c
12 *
13 *-------------------------------------------------------------------------
14 */
15#include "postgres.h"
16
17#include "access/genam.h"
18#include "access/htup_details.h"
19#include "access/table.h"
20#include "access/xact.h"
21#include "catalog/catalog.h"
22#include "catalog/dependency.h"
23#include "catalog/heap.h"
24#include "catalog/index.h"
25#include "catalog/objectaccess.h"
26#include "catalog/pg_am.h"
27#include "catalog/pg_amop.h"
28#include "catalog/pg_amproc.h"
29#include "catalog/pg_attrdef.h"
30#include "catalog/pg_authid.h"
31#include "catalog/pg_auth_members.h"
32#include "catalog/pg_cast.h"
33#include "catalog/pg_collation.h"
34#include "catalog/pg_constraint.h"
35#include "catalog/pg_conversion.h"
36#include "catalog/pg_database.h"
37#include "catalog/pg_default_acl.h"
38#include "catalog/pg_depend.h"
39#include "catalog/pg_event_trigger.h"
40#include "catalog/pg_extension.h"
41#include "catalog/pg_foreign_data_wrapper.h"
42#include "catalog/pg_foreign_server.h"
43#include "catalog/pg_init_privs.h"
44#include "catalog/pg_language.h"
45#include "catalog/pg_largeobject.h"
46#include "catalog/pg_namespace.h"
47#include "catalog/pg_opclass.h"
48#include "catalog/pg_operator.h"
49#include "catalog/pg_opfamily.h"
50#include "catalog/pg_parameter_acl.h"
51#include "catalog/pg_policy.h"
52#include "catalog/pg_proc.h"
53#include "catalog/pg_publication.h"
54#include "catalog/pg_publication_namespace.h"
55#include "catalog/pg_publication_rel.h"
56#include "catalog/pg_rewrite.h"
57#include "catalog/pg_statistic_ext.h"
58#include "catalog/pg_subscription.h"
59#include "catalog/pg_tablespace.h"
60#include "catalog/pg_transform.h"
61#include "catalog/pg_trigger.h"
62#include "catalog/pg_ts_config.h"
63#include "catalog/pg_ts_dict.h"
64#include "catalog/pg_ts_parser.h"
65#include "catalog/pg_ts_template.h"
66#include "catalog/pg_type.h"
67#include "catalog/pg_user_mapping.h"
68#include "commands/comment.h"
69#include "commands/defrem.h"
70#include "commands/event_trigger.h"
71#include "commands/extension.h"
72#include "commands/policy.h"
73#include "commands/publicationcmds.h"
74#include "commands/seclabel.h"
75#include "commands/sequence.h"
76#include "commands/trigger.h"
77#include "commands/typecmds.h"
78#include "funcapi.h"
79#include "miscadmin.h"
80#include "nodes/nodeFuncs.h"
81#include "parser/parsetree.h"
82#include "rewrite/rewriteRemove.h"
83#include "storage/lmgr.h"
84#include "utils/fmgroids.h"
85#include "utils/lsyscache.h"
86#include "utils/syscache.h"
87
88
89/*
90 * Deletion processing requires additional state for each ObjectAddress that
91 * it's planning to delete. For simplicity and code-sharing we make the
92 * ObjectAddresses code support arrays with or without this extra state.
93 */
94 typedef struct
95{
96 int flags; /* bitmask, see bit definitions below */
97 ObjectAddress dependee; /* object whose deletion forced this one */
98} ObjectAddressExtra;
99
100/* ObjectAddressExtra flag bits */
101 #define DEPFLAG_ORIGINAL 0x0001 /* an original deletion target */
102 #define DEPFLAG_NORMAL 0x0002 /* reached via normal dependency */
103 #define DEPFLAG_AUTO 0x0004 /* reached via auto dependency */
104 #define DEPFLAG_INTERNAL 0x0008 /* reached via internal dependency */
105 #define DEPFLAG_PARTITION 0x0010 /* reached via partition dependency */
106 #define DEPFLAG_EXTENSION 0x0020 /* reached via extension dependency */
107 #define DEPFLAG_REVERSE 0x0040 /* reverse internal/extension link */
108 #define DEPFLAG_IS_PART 0x0080 /* has a partition dependency */
109 #define DEPFLAG_SUBOBJECT 0x0100 /* subobject of another deletable object */
110
111
112/* expansible list of ObjectAddresses */
113 struct ObjectAddresses
114{
115 ObjectAddress *refs; /* => palloc'd array */
116 ObjectAddressExtra *extras; /* => palloc'd array, or NULL if not used */
117 int numrefs; /* current number of references */
118 int maxrefs; /* current size of palloc'd array(s) */
119};
120
121/* typedef ObjectAddresses appears in dependency.h */
122
123/* threaded list of ObjectAddresses, for recursion detection */
124 typedef struct ObjectAddressStack
125{
126 const ObjectAddress *object; /* object being visited */
127 int flags; /* its current flag bits */
128 struct ObjectAddressStack *next; /* next outer stack level */
129 } ObjectAddressStack;
130
131/* temporary storage in findDependentObjects */
132 typedef struct
133{
134 ObjectAddress obj; /* object to be deleted --- MUST BE FIRST */
135 int subflags; /* flags to pass down when recursing to obj */
136} ObjectAddressAndFlags;
137
138/* for find_expr_references_walker */
139 typedef struct
140{
141 ObjectAddresses *addrs; /* addresses being accumulated */
142 List *rtables; /* list of rangetables to resolve Vars */
143} find_expr_references_context;
144
145
146static void findDependentObjects(const ObjectAddress *object,
147 int objflags,
148 int flags,
149 ObjectAddressStack *stack,
150 ObjectAddresses *targetObjects,
151 const ObjectAddresses *pendingObjects,
152 Relation *depRel);
153static void reportDependentObjects(const ObjectAddresses *targetObjects,
154 DropBehavior behavior,
155 int flags,
156 const ObjectAddress *origObject);
157 static void deleteOneObject(const ObjectAddress *object,
158 Relation *depRel, int32 flags);
159static void doDeletion(const ObjectAddress *object, int flags);
160static bool find_expr_references_walker(Node *node,
161 find_expr_references_context *context);
162static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
163 find_expr_references_context *context);
164static void eliminate_duplicate_dependencies(ObjectAddresses *addrs);
165static int object_address_comparator(const void *a, const void *b);
166static void add_object_address(Oid classId, Oid objectId, int32 subId,
167 ObjectAddresses *addrs);
168static void add_exact_object_address_extra(const ObjectAddress *object,
169 const ObjectAddressExtra *extra,
170 ObjectAddresses *addrs);
171static bool object_address_present_add_flags(const ObjectAddress *object,
172 int flags,
173 ObjectAddresses *addrs);
174static bool stack_address_present_add_flags(const ObjectAddress *object,
175 int flags,
176 ObjectAddressStack *stack);
177static void DeleteInitPrivs(const ObjectAddress *object);
178
179
180/*
181 * Go through the objects given running the final actions on them, and execute
182 * the actual deletion.
183 */
184static void
185 deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel,
186 int flags)
187{
188 int i;
189
190 /*
191 * Keep track of objects for event triggers, if necessary.
192 */
193 if (trackDroppedObjectsNeeded() && !(flags & PERFORM_DELETION_INTERNAL))
194 {
195 for (i = 0; i < targetObjects->numrefs; i++)
196 {
197 const ObjectAddress *thisobj = &targetObjects->refs[i];
198 const ObjectAddressExtra *extra = &targetObjects->extras[i];
199 bool original = false;
200 bool normal = false;
201
202 if (extra->flags & DEPFLAG_ORIGINAL)
203 original = true;
204 if (extra->flags & DEPFLAG_NORMAL)
205 normal = true;
206 if (extra->flags & DEPFLAG_REVERSE)
207 normal = true;
208
209 if (EventTriggerSupportsObject(thisobj))
210 {
211 EventTriggerSQLDropAddObject(thisobj, original, normal);
212 }
213 }
214 }
215
216 /*
217 * Delete all the objects in the proper order, except that if told to, we
218 * should skip the original object(s).
219 */
220 for (i = 0; i < targetObjects->numrefs; i++)
221 {
222 ObjectAddress *thisobj = targetObjects->refs + i;
223 ObjectAddressExtra *thisextra = targetObjects->extras + i;
224
225 if ((flags & PERFORM_DELETION_SKIP_ORIGINAL) &&
226 (thisextra->flags & DEPFLAG_ORIGINAL))
227 continue;
228
229 deleteOneObject(thisobj, depRel, flags);
230 }
231}
232
233/*
234 * performDeletion: attempt to drop the specified object. If CASCADE
235 * behavior is specified, also drop any dependent objects (recursively).
236 * If RESTRICT behavior is specified, error out if there are any dependent
237 * objects, except for those that should be implicitly dropped anyway
238 * according to the dependency type.
239 *
240 * This is the outer control routine for all forms of DROP that drop objects
241 * that can participate in dependencies. Note that performMultipleDeletions
242 * is a variant on the same theme; if you change anything here you'll likely
243 * need to fix that too.
244 *
245 * Bits in the flags argument can include:
246 *
247 * PERFORM_DELETION_INTERNAL: indicates that the drop operation is not the
248 * direct result of a user-initiated action. For example, when a temporary
249 * schema is cleaned out so that a new backend can use it, or when a column
250 * default is dropped as an intermediate step while adding a new one, that's
251 * an internal operation. On the other hand, when we drop something because
252 * the user issued a DROP statement against it, that's not internal. Currently
253 * this suppresses calling event triggers and making some permissions checks.
254 *
255 * PERFORM_DELETION_CONCURRENTLY: perform the drop concurrently. This does
256 * not currently work for anything except dropping indexes; don't set it for
257 * other object types or you may get strange results.
258 *
259 * PERFORM_DELETION_QUIETLY: reduce message level from NOTICE to DEBUG2.
260 *
261 * PERFORM_DELETION_SKIP_ORIGINAL: do not delete the specified object(s),
262 * but only what depends on it/them.
263 *
264 * PERFORM_DELETION_SKIP_EXTENSIONS: do not delete extensions, even when
265 * deleting objects that are part of an extension. This should generally
266 * be used only when dropping temporary objects.
267 *
268 * PERFORM_DELETION_CONCURRENT_LOCK: perform the drop normally but with a lock
269 * as if it were concurrent. This is used by REINDEX CONCURRENTLY.
270 *
271 */
272void
273 performDeletion(const ObjectAddress *object,
274 DropBehavior behavior, int flags)
275{
276 Relation depRel;
277 ObjectAddresses *targetObjects;
278
279 /*
280 * We save some cycles by opening pg_depend just once and passing the
281 * Relation pointer down to all the recursive deletion steps.
282 */
283 depRel = table_open(DependRelationId, RowExclusiveLock);
284
285 /*
286 * Acquire deletion lock on the target object. (Ideally the caller has
287 * done this already, but many places are sloppy about it.)
288 */
289 AcquireDeletionLock(object, 0);
290
291 /*
292 * Construct a list of objects to delete (ie, the given object plus
293 * everything directly or indirectly dependent on it).
294 */
295 targetObjects = new_object_addresses();
296
297 findDependentObjects(object,
298 DEPFLAG_ORIGINAL,
299 flags,
300 NULL, /* empty stack */
301 targetObjects,
302 NULL, /* no pendingObjects */
303 &depRel);
304
305 /*
306 * Check if deletion is allowed, and report about cascaded deletes.
307 */
308 reportDependentObjects(targetObjects,
309 behavior,
310 flags,
311 object);
312
313 /* do the deed */
314 deleteObjectsInList(targetObjects, &depRel, flags);
315
316 /* And clean up */
317 free_object_addresses(targetObjects);
318
319 table_close(depRel, RowExclusiveLock);
320}
321
322/*
323 * performMultipleDeletions: Similar to performDeletion, but act on multiple
324 * objects at once.
325 *
326 * The main difference from issuing multiple performDeletion calls is that the
327 * list of objects that would be implicitly dropped, for each object to be
328 * dropped, is the union of the implicit-object list for all objects. This
329 * makes each check be more relaxed.
330 */
331void
332 performMultipleDeletions(const ObjectAddresses *objects,
333 DropBehavior behavior, int flags)
334{
335 Relation depRel;
336 ObjectAddresses *targetObjects;
337 int i;
338
339 /* No work if no objects... */
340 if (objects->numrefs <= 0)
341 return;
342
343 /*
344 * We save some cycles by opening pg_depend just once and passing the
345 * Relation pointer down to all the recursive deletion steps.
346 */
347 depRel = table_open(DependRelationId, RowExclusiveLock);
348
349 /*
350 * Construct a list of objects to delete (ie, the given objects plus
351 * everything directly or indirectly dependent on them). Note that
352 * because we pass the whole objects list as pendingObjects context, we
353 * won't get a failure from trying to delete an object that is internally
354 * dependent on another one in the list; we'll just skip that object and
355 * delete it when we reach its owner.
356 */
357 targetObjects = new_object_addresses();
358
359 for (i = 0; i < objects->numrefs; i++)
360 {
361 const ObjectAddress *thisobj = objects->refs + i;
362
363 /*
364 * Acquire deletion lock on each target object. (Ideally the caller
365 * has done this already, but many places are sloppy about it.)
366 */
367 AcquireDeletionLock(thisobj, flags);
368
369 findDependentObjects(thisobj,
370 DEPFLAG_ORIGINAL,
371 flags,
372 NULL, /* empty stack */
373 targetObjects,
374 objects,
375 &depRel);
376 }
377
378 /*
379 * Check if deletion is allowed, and report about cascaded deletes.
380 *
381 * If there's exactly one object being deleted, report it the same way as
382 * in performDeletion(), else we have to be vaguer.
383 */
384 reportDependentObjects(targetObjects,
385 behavior,
386 flags,
387 (objects->numrefs == 1 ? objects->refs : NULL));
388
389 /* do the deed */
390 deleteObjectsInList(targetObjects, &depRel, flags);
391
392 /* And clean up */
393 free_object_addresses(targetObjects);
394
395 table_close(depRel, RowExclusiveLock);
396}
397
398/*
399 * findDependentObjects - find all objects that depend on 'object'
400 *
401 * For every object that depends on the starting object, acquire a deletion
402 * lock on the object, add it to targetObjects (if not already there),
403 * and recursively find objects that depend on it. An object's dependencies
404 * will be placed into targetObjects before the object itself; this means
405 * that the finished list's order represents a safe deletion order.
406 *
407 * The caller must already have a deletion lock on 'object' itself,
408 * but must not have added it to targetObjects. (Note: there are corner
409 * cases where we won't add the object either, and will also release the
410 * caller-taken lock. This is a bit ugly, but the API is set up this way
411 * to allow easy rechecking of an object's liveness after we lock it. See
412 * notes within the function.)
413 *
414 * When dropping a whole object (subId = 0), we find dependencies for
415 * its sub-objects too.
416 *
417 * object: the object to add to targetObjects and find dependencies on
418 * objflags: flags to be ORed into the object's targetObjects entry
419 * flags: PERFORM_DELETION_xxx flags for the deletion operation as a whole
420 * stack: list of objects being visited in current recursion; topmost item
421 * is the object that we recursed from (NULL for external callers)
422 * targetObjects: list of objects that are scheduled to be deleted
423 * pendingObjects: list of other objects slated for destruction, but
424 * not necessarily in targetObjects yet (can be NULL if none)
425 * *depRel: already opened pg_depend relation
426 *
427 * Note: objflags describes the reason for visiting this particular object
428 * at this time, and is not passed down when recursing. The flags argument
429 * is passed down, since it describes what we're doing overall.
430 */
431static void
432 findDependentObjects(const ObjectAddress *object,
433 int objflags,
434 int flags,
435 ObjectAddressStack *stack,
436 ObjectAddresses *targetObjects,
437 const ObjectAddresses *pendingObjects,
438 Relation *depRel)
439{
440 ScanKeyData key[3];
441 int nkeys;
442 SysScanDesc scan;
443 HeapTuple tup;
444 ObjectAddress otherObject;
445 ObjectAddress owningObject;
446 ObjectAddress partitionObject;
447 ObjectAddressAndFlags *dependentObjects;
448 int numDependentObjects;
449 int maxDependentObjects;
450 ObjectAddressStack mystack;
451 ObjectAddressExtra extra;
452
453 /*
454 * If the target object is already being visited in an outer recursion
455 * level, just report the current objflags back to that level and exit.
456 * This is needed to avoid infinite recursion in the face of circular
457 * dependencies.
458 *
459 * The stack check alone would result in dependency loops being broken at
460 * an arbitrary point, ie, the first member object of the loop to be
461 * visited is the last one to be deleted. This is obviously unworkable.
462 * However, the check for internal dependency below guarantees that we
463 * will not break a loop at an internal dependency: if we enter the loop
464 * at an "owned" object we will switch and start at the "owning" object
465 * instead. We could probably hack something up to avoid breaking at an
466 * auto dependency, too, if we had to. However there are no known cases
467 * where that would be necessary.
468 */
469 if (stack_address_present_add_flags(object, objflags, stack))
470 return;
471
472 /*
473 * since this function recurses, it could be driven to stack overflow,
474 * because of the deep dependency tree, not only due to dependency loops.
475 */
476 check_stack_depth();
477
478 /*
479 * It's also possible that the target object has already been completely
480 * processed and put into targetObjects. If so, again we just add the
481 * specified objflags to its entry and return.
482 *
483 * (Note: in these early-exit cases we could release the caller-taken
484 * lock, since the object is presumably now locked multiple times; but it
485 * seems not worth the cycles.)
486 */
487 if (object_address_present_add_flags(object, objflags, targetObjects))
488 return;
489
490 /*
491 * If the target object is pinned, we can just error out immediately; it
492 * won't have any objects recorded as depending on it.
493 */
494 if (IsPinnedObject(object->classId, object->objectId))
495 ereport(ERROR,
496 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
497 errmsg("cannot drop %s because it is required by the database system",
498 getObjectDescription(object, false))));
499
500 /*
501 * The target object might be internally dependent on some other object
502 * (its "owner"), and/or be a member of an extension (also considered its
503 * owner). If so, and if we aren't recursing from the owning object, we
504 * have to transform this deletion request into a deletion request of the
505 * owning object. (We'll eventually recurse back to this object, but the
506 * owning object has to be visited first so it will be deleted after.) The
507 * way to find out about this is to scan the pg_depend entries that show
508 * what this object depends on.
509 */
510 ScanKeyInit(&key[0],
511 Anum_pg_depend_classid,
512 BTEqualStrategyNumber, F_OIDEQ,
513 ObjectIdGetDatum(object->classId));
514 ScanKeyInit(&key[1],
515 Anum_pg_depend_objid,
516 BTEqualStrategyNumber, F_OIDEQ,
517 ObjectIdGetDatum(object->objectId));
518 if (object->objectSubId != 0)
519 {
520 /* Consider only dependencies of this sub-object */
521 ScanKeyInit(&key[2],
522 Anum_pg_depend_objsubid,
523 BTEqualStrategyNumber, F_INT4EQ,
524 Int32GetDatum(object->objectSubId));
525 nkeys = 3;
526 }
527 else
528 {
529 /* Consider dependencies of this object and any sub-objects it has */
530 nkeys = 2;
531 }
532
533 scan = systable_beginscan(*depRel, DependDependerIndexId, true,
534 NULL, nkeys, key);
535
536 /* initialize variables that loop may fill */
537 memset(&owningObject, 0, sizeof(owningObject));
538 memset(&partitionObject, 0, sizeof(partitionObject));
539
540 while (HeapTupleIsValid(tup = systable_getnext(scan)))
541 {
542 Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
543
544 otherObject.classId = foundDep->refclassid;
545 otherObject.objectId = foundDep->refobjid;
546 otherObject.objectSubId = foundDep->refobjsubid;
547
548 /*
549 * When scanning dependencies of a whole object, we may find rows
550 * linking sub-objects of the object to the object itself. (Normally,
551 * such a dependency is implicit, but we must make explicit ones in
552 * some cases involving partitioning.) We must ignore such rows to
553 * avoid infinite recursion.
554 */
555 if (otherObject.classId == object->classId &&
556 otherObject.objectId == object->objectId &&
557 object->objectSubId == 0)
558 continue;
559
560 switch (foundDep->deptype)
561 {
562 case DEPENDENCY_NORMAL:
563 case DEPENDENCY_AUTO:
564 case DEPENDENCY_AUTO_EXTENSION:
565 /* no problem */
566 break;
567
568 case DEPENDENCY_EXTENSION:
569
570 /*
571 * If told to, ignore EXTENSION dependencies altogether. This
572 * flag is normally used to prevent dropping extensions during
573 * temporary-object cleanup, even if a temp object was created
574 * during an extension script.
575 */
576 if (flags & PERFORM_DELETION_SKIP_EXTENSIONS)
577 break;
578
579 /*
580 * If the other object is the extension currently being
581 * created/altered, ignore this dependency and continue with
582 * the deletion. This allows dropping of an extension's
583 * objects within the extension's scripts, as well as corner
584 * cases such as dropping a transient object created within
585 * such a script.
586 */
587 if (creating_extension &&
588 otherObject.classId == ExtensionRelationId &&
589 otherObject.objectId == CurrentExtensionObject)
590 break;
591
592 /* Otherwise, treat this like an internal dependency */
593 /* FALL THRU */
594
595 case DEPENDENCY_INTERNAL:
596
597 /*
598 * This object is part of the internal implementation of
599 * another object, or is part of the extension that is the
600 * other object. We have three cases:
601 *
602 * 1. At the outermost recursion level, we must disallow the
603 * DROP. However, if the owning object is listed in
604 * pendingObjects, just release the caller's lock and return;
605 * we'll eventually complete the DROP when we reach that entry
606 * in the pending list.
607 *
608 * Note: the above statement is true only if this pg_depend
609 * entry still exists by then; in principle, therefore, we
610 * could miss deleting an item the user told us to delete.
611 * However, no inconsistency can result: since we're at outer
612 * level, there is no object depending on this one.
613 */
614 if (stack == NULL)
615 {
616 if (pendingObjects &&
617 object_address_present(&otherObject, pendingObjects))
618 {
619 systable_endscan(scan);
620 /* need to release caller's lock; see notes below */
621 ReleaseDeletionLock(object);
622 return;
623 }
624
625 /*
626 * We postpone actually issuing the error message until
627 * after this loop, so that we can make the behavior
628 * independent of the ordering of pg_depend entries, at
629 * least if there's not more than one INTERNAL and one
630 * EXTENSION dependency. (If there's more, we'll complain
631 * about a random one of them.) Prefer to complain about
632 * EXTENSION, since that's generally a more important
633 * dependency.
634 */
635 if (!OidIsValid(owningObject.classId) ||
636 foundDep->deptype == DEPENDENCY_EXTENSION)
637 owningObject = otherObject;
638 break;
639 }
640
641 /*
642 * 2. When recursing from the other end of this dependency,
643 * it's okay to continue with the deletion. This holds when
644 * recursing from a whole object that includes the nominal
645 * other end as a component, too. Since there can be more
646 * than one "owning" object, we have to allow matches that are
647 * more than one level down in the stack.
648 */
649 if (stack_address_present_add_flags(&otherObject, 0, stack))
650 break;
651
652 /*
653 * 3. Not all the owning objects have been visited, so
654 * transform this deletion request into a delete of this
655 * owning object.
656 *
657 * First, release caller's lock on this object and get
658 * deletion lock on the owning object. (We must release
659 * caller's lock to avoid deadlock against a concurrent
660 * deletion of the owning object.)
661 */
662 ReleaseDeletionLock(object);
663 AcquireDeletionLock(&otherObject, 0);
664
665 /*
666 * The owning object might have been deleted while we waited
667 * to lock it; if so, neither it nor the current object are
668 * interesting anymore. We test this by checking the
669 * pg_depend entry (see notes below).
670 */
671 if (!systable_recheck_tuple(scan, tup))
672 {
673 systable_endscan(scan);
674 ReleaseDeletionLock(&otherObject);
675 return;
676 }
677
678 /*
679 * One way or the other, we're done with the scan; might as
680 * well close it down before recursing, to reduce peak
681 * resource consumption.
682 */
683 systable_endscan(scan);
684
685 /*
686 * Okay, recurse to the owning object instead of proceeding.
687 *
688 * We do not need to stack the current object; we want the
689 * traversal order to be as if the original reference had
690 * linked to the owning object instead of this one.
691 *
692 * The dependency type is a "reverse" dependency: we need to
693 * delete the owning object if this one is to be deleted, but
694 * this linkage is never a reason for an automatic deletion.
695 */
696 findDependentObjects(&otherObject,
697 DEPFLAG_REVERSE,
698 flags,
699 stack,
700 targetObjects,
701 pendingObjects,
702 depRel);
703
704 /*
705 * The current target object should have been added to
706 * targetObjects while processing the owning object; but it
707 * probably got only the flag bits associated with the
708 * dependency we're looking at. We need to add the objflags
709 * that were passed to this recursion level, too, else we may
710 * get a bogus failure in reportDependentObjects (if, for
711 * example, we were called due to a partition dependency).
712 *
713 * If somehow the current object didn't get scheduled for
714 * deletion, bleat. (That would imply that somebody deleted
715 * this dependency record before the recursion got to it.)
716 * Another idea would be to reacquire lock on the current
717 * object and resume trying to delete it, but it seems not
718 * worth dealing with the race conditions inherent in that.
719 */
720 if (!object_address_present_add_flags(object, objflags,
721 targetObjects))
722 elog(ERROR, "deletion of owning object %s failed to delete %s",
723 getObjectDescription(&otherObject, false),
724 getObjectDescription(object, false));
725
726 /* And we're done here. */
727 return;
728
729 case DEPENDENCY_PARTITION_PRI:
730
731 /*
732 * Remember that this object has a partition-type dependency.
733 * After the dependency scan, we'll complain if we didn't find
734 * a reason to delete one of its partition dependencies.
735 */
736 objflags |= DEPFLAG_IS_PART;
737
738 /*
739 * Also remember the primary partition owner, for error
740 * messages. If there are multiple primary owners (which
741 * there should not be), we'll report a random one of them.
742 */
743 partitionObject = otherObject;
744 break;
745
746 case DEPENDENCY_PARTITION_SEC:
747
748 /*
749 * Only use secondary partition owners in error messages if we
750 * find no primary owner (which probably shouldn't happen).
751 */
752 if (!(objflags & DEPFLAG_IS_PART))
753 partitionObject = otherObject;
754
755 /*
756 * Remember that this object has a partition-type dependency.
757 * After the dependency scan, we'll complain if we didn't find
758 * a reason to delete one of its partition dependencies.
759 */
760 objflags |= DEPFLAG_IS_PART;
761 break;
762
763 default:
764 elog(ERROR, "unrecognized dependency type '%c' for %s",
765 foundDep->deptype, getObjectDescription(object, false));
766 break;
767 }
768 }
769
770 systable_endscan(scan);
771
772 /*
773 * If we found an INTERNAL or EXTENSION dependency when we're at outer
774 * level, complain about it now. If we also found a PARTITION dependency,
775 * we prefer to report the PARTITION dependency. This is arbitrary but
776 * seems to be more useful in practice.
777 */
778 if (OidIsValid(owningObject.classId))
779 {
780 char *otherObjDesc;
781
782 if (OidIsValid(partitionObject.classId))
783 otherObjDesc = getObjectDescription(&partitionObject, false);
784 else
785 otherObjDesc = getObjectDescription(&owningObject, false);
786
787 ereport(ERROR,
788 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
789 errmsg("cannot drop %s because %s requires it",
790 getObjectDescription(object, false), otherObjDesc),
791 errhint("You can drop %s instead.", otherObjDesc)));
792 }
793
794 /*
795 * Next, identify all objects that directly depend on the current object.
796 * To ensure predictable deletion order, we collect them up in
797 * dependentObjects and sort the list before actually recursing. (The
798 * deletion order would be valid in any case, but doing this ensures
799 * consistent output from DROP CASCADE commands, which is helpful for
800 * regression testing.)
801 */
802 maxDependentObjects = 128; /* arbitrary initial allocation */
803 dependentObjects = (ObjectAddressAndFlags *)
804 palloc(maxDependentObjects * sizeof(ObjectAddressAndFlags));
805 numDependentObjects = 0;
806
807 ScanKeyInit(&key[0],
808 Anum_pg_depend_refclassid,
809 BTEqualStrategyNumber, F_OIDEQ,
810 ObjectIdGetDatum(object->classId));
811 ScanKeyInit(&key[1],
812 Anum_pg_depend_refobjid,
813 BTEqualStrategyNumber, F_OIDEQ,
814 ObjectIdGetDatum(object->objectId));
815 if (object->objectSubId != 0)
816 {
817 ScanKeyInit(&key[2],
818 Anum_pg_depend_refobjsubid,
819 BTEqualStrategyNumber, F_INT4EQ,
820 Int32GetDatum(object->objectSubId));
821 nkeys = 3;
822 }
823 else
824 nkeys = 2;
825
826 scan = systable_beginscan(*depRel, DependReferenceIndexId, true,
827 NULL, nkeys, key);
828
829 while (HeapTupleIsValid(tup = systable_getnext(scan)))
830 {
831 Form_pg_depend foundDep = (Form_pg_depend) GETSTRUCT(tup);
832 int subflags;
833
834 otherObject.classId = foundDep->classid;
835 otherObject.objectId = foundDep->objid;
836 otherObject.objectSubId = foundDep->objsubid;
837
838 /*
839 * If what we found is a sub-object of the current object, just ignore
840 * it. (Normally, such a dependency is implicit, but we must make
841 * explicit ones in some cases involving partitioning.)
842 */
843 if (otherObject.classId == object->classId &&
844 otherObject.objectId == object->objectId &&
845 object->objectSubId == 0)
846 continue;
847
848 /*
849 * Must lock the dependent object before recursing to it.
850 */
851 AcquireDeletionLock(&otherObject, 0);
852
853 /*
854 * The dependent object might have been deleted while we waited to
855 * lock it; if so, we don't need to do anything more with it. We can
856 * test this cheaply and independently of the object's type by seeing
857 * if the pg_depend tuple we are looking at is still live. (If the
858 * object got deleted, the tuple would have been deleted too.)
859 */
860 if (!systable_recheck_tuple(scan, tup))
861 {
862 /* release the now-useless lock */
863 ReleaseDeletionLock(&otherObject);
864 /* and continue scanning for dependencies */
865 continue;
866 }
867
868 /*
869 * We do need to delete it, so identify objflags to be passed down,
870 * which depend on the dependency type.
871 */
872 switch (foundDep->deptype)
873 {
874 case DEPENDENCY_NORMAL:
875 subflags = DEPFLAG_NORMAL;
876 break;
877 case DEPENDENCY_AUTO:
878 case DEPENDENCY_AUTO_EXTENSION:
879 subflags = DEPFLAG_AUTO;
880 break;
881 case DEPENDENCY_INTERNAL:
882 subflags = DEPFLAG_INTERNAL;
883 break;
884 case DEPENDENCY_PARTITION_PRI:
885 case DEPENDENCY_PARTITION_SEC:
886 subflags = DEPFLAG_PARTITION;
887 break;
888 case DEPENDENCY_EXTENSION:
889 subflags = DEPFLAG_EXTENSION;
890 break;
891 default:
892 elog(ERROR, "unrecognized dependency type '%c' for %s",
893 foundDep->deptype, getObjectDescription(object, false));
894 subflags = 0; /* keep compiler quiet */
895 break;
896 }
897
898 /* And add it to the pending-objects list */
899 if (numDependentObjects >= maxDependentObjects)
900 {
901 /* enlarge array if needed */
902 maxDependentObjects *= 2;
903 dependentObjects = (ObjectAddressAndFlags *)
904 repalloc(dependentObjects,
905 maxDependentObjects * sizeof(ObjectAddressAndFlags));
906 }
907
908 dependentObjects[numDependentObjects].obj = otherObject;
909 dependentObjects[numDependentObjects].subflags = subflags;
910 numDependentObjects++;
911 }
912
913 systable_endscan(scan);
914
915 /*
916 * Now we can sort the dependent objects into a stable visitation order.
917 * It's safe to use object_address_comparator here since the obj field is
918 * first within ObjectAddressAndFlags.
919 */
920 if (numDependentObjects > 1)
921 qsort(dependentObjects, numDependentObjects,
922 sizeof(ObjectAddressAndFlags),
923 object_address_comparator);
924
925 /*
926 * Now recurse to the dependent objects. We must visit them first since
927 * they have to be deleted before the current object.
928 */
929 mystack.object = object; /* set up a new stack level */
930 mystack.flags = objflags;
931 mystack.next = stack;
932
933 for (int i = 0; i < numDependentObjects; i++)
934 {
935 ObjectAddressAndFlags *depObj = dependentObjects + i;
936
937 findDependentObjects(&depObj->obj,
938 depObj->subflags,
939 flags,
940 &mystack,
941 targetObjects,
942 pendingObjects,
943 depRel);
944 }
945
946 pfree(dependentObjects);
947
948 /*
949 * Finally, we can add the target object to targetObjects. Be careful to
950 * include any flags that were passed back down to us from inner recursion
951 * levels. Record the "dependee" as being either the most important
952 * partition owner if there is one, else the object we recursed from, if
953 * any. (The logic in reportDependentObjects() is such that it can only
954 * need one of those objects.)
955 */
956 extra.flags = mystack.flags;
957 if (extra.flags & DEPFLAG_IS_PART)
958 extra.dependee = partitionObject;
959 else if (stack)
960 extra.dependee = *stack->object;
961 else
962 memset(&extra.dependee, 0, sizeof(extra.dependee));
963 add_exact_object_address_extra(object, &extra, targetObjects);
964}
965
966/*
967 * reportDependentObjects - report about dependencies, and fail if RESTRICT
968 *
969 * Tell the user about dependent objects that we are going to delete
970 * (or would need to delete, but are prevented by RESTRICT mode);
971 * then error out if there are any and it's not CASCADE mode.
972 *
973 * targetObjects: list of objects that are scheduled to be deleted
974 * behavior: RESTRICT or CASCADE
975 * flags: other flags for the deletion operation
976 * origObject: base object of deletion, or NULL if not available
977 * (the latter case occurs in DROP OWNED)
978 */
979static void
980 reportDependentObjects(const ObjectAddresses *targetObjects,
981 DropBehavior behavior,
982 int flags,
983 const ObjectAddress *origObject)
984{
985 int msglevel = (flags & PERFORM_DELETION_QUIETLY) ? DEBUG2 : NOTICE;
986 bool ok = true;
987 StringInfoData clientdetail;
988 StringInfoData logdetail;
989 int numReportedClient = 0;
990 int numNotReportedClient = 0;
991 int i;
992
993 /*
994 * If we need to delete any partition-dependent objects, make sure that
995 * we're deleting at least one of their partition dependencies, too. That
996 * can be detected by checking that we reached them by a PARTITION
997 * dependency at some point.
998 *
999 * We just report the first such object, as in most cases the only way to
1000 * trigger this complaint is to explicitly try to delete one partition of
1001 * a partitioned object.
1002 */
1003 for (i = 0; i < targetObjects->numrefs; i++)
1004 {
1005 const ObjectAddressExtra *extra = &targetObjects->extras[i];
1006
1007 if ((extra->flags & DEPFLAG_IS_PART) &&
1008 !(extra->flags & DEPFLAG_PARTITION))
1009 {
1010 const ObjectAddress *object = &targetObjects->refs[i];
1011 char *otherObjDesc = getObjectDescription(&extra->dependee,
1012 false);
1013
1014 ereport(ERROR,
1015 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1016 errmsg("cannot drop %s because %s requires it",
1017 getObjectDescription(object, false), otherObjDesc),
1018 errhint("You can drop %s instead.", otherObjDesc)));
1019 }
1020 }
1021
1022 /*
1023 * If no error is to be thrown, and the msglevel is too low to be shown to
1024 * either client or server log, there's no need to do any of the rest of
1025 * the work.
1026 */
1027 if (behavior == DROP_CASCADE &&
1028 !message_level_is_interesting(msglevel))
1029 return;
1030
1031 /*
1032 * We limit the number of dependencies reported to the client to
1033 * MAX_REPORTED_DEPS, since client software may not deal well with
1034 * enormous error strings. The server log always gets a full report.
1035 */
1036#define MAX_REPORTED_DEPS 100
1037
1038 initStringInfo(&clientdetail);
1039 initStringInfo(&logdetail);
1040
1041 /*
1042 * We process the list back to front (ie, in dependency order not deletion
1043 * order), since this makes for a more understandable display.
1044 */
1045 for (i = targetObjects->numrefs - 1; i >= 0; i--)
1046 {
1047 const ObjectAddress *obj = &targetObjects->refs[i];
1048 const ObjectAddressExtra *extra = &targetObjects->extras[i];
1049 char *objDesc;
1050
1051 /* Ignore the original deletion target(s) */
1052 if (extra->flags & DEPFLAG_ORIGINAL)
1053 continue;
1054
1055 /* Also ignore sub-objects; we'll report the whole object elsewhere */
1056 if (extra->flags & DEPFLAG_SUBOBJECT)
1057 continue;
1058
1059 objDesc = getObjectDescription(obj, false);
1060
1061 /* An object being dropped concurrently doesn't need to be reported */
1062 if (objDesc == NULL)
1063 continue;
1064
1065 /*
1066 * If, at any stage of the recursive search, we reached the object via
1067 * an AUTO, INTERNAL, PARTITION, or EXTENSION dependency, then it's
1068 * okay to delete it even in RESTRICT mode.
1069 */
1070 if (extra->flags & (DEPFLAG_AUTO |
1071 DEPFLAG_INTERNAL |
1072 DEPFLAG_PARTITION |
1073 DEPFLAG_EXTENSION))
1074 {
1075 /*
1076 * auto-cascades are reported at DEBUG2, not msglevel. We don't
1077 * try to combine them with the regular message because the
1078 * results are too confusing when client_min_messages and
1079 * log_min_messages are different.
1080 */
1081 ereport(DEBUG2,
1082 (errmsg_internal("drop auto-cascades to %s",
1083 objDesc)));
1084 }
1085 else if (behavior == DROP_RESTRICT)
1086 {
1087 char *otherDesc = getObjectDescription(&extra->dependee,
1088 false);
1089
1090 if (otherDesc)
1091 {
1092 if (numReportedClient < MAX_REPORTED_DEPS)
1093 {
1094 /* separate entries with a newline */
1095 if (clientdetail.len != 0)
1096 appendStringInfoChar(&clientdetail, '\n');
1097 appendStringInfo(&clientdetail, _("%s depends on %s"),
1098 objDesc, otherDesc);
1099 numReportedClient++;
1100 }
1101 else
1102 numNotReportedClient++;
1103 /* separate entries with a newline */
1104 if (logdetail.len != 0)
1105 appendStringInfoChar(&logdetail, '\n');
1106 appendStringInfo(&logdetail, _("%s depends on %s"),
1107 objDesc, otherDesc);
1108 pfree(otherDesc);
1109 }
1110 else
1111 numNotReportedClient++;
1112 ok = false;
1113 }
1114 else
1115 {
1116 if (numReportedClient < MAX_REPORTED_DEPS)
1117 {
1118 /* separate entries with a newline */
1119 if (clientdetail.len != 0)
1120 appendStringInfoChar(&clientdetail, '\n');
1121 appendStringInfo(&clientdetail, _("drop cascades to %s"),
1122 objDesc);
1123 numReportedClient++;
1124 }
1125 else
1126 numNotReportedClient++;
1127 /* separate entries with a newline */
1128 if (logdetail.len != 0)
1129 appendStringInfoChar(&logdetail, '\n');
1130 appendStringInfo(&logdetail, _("drop cascades to %s"),
1131 objDesc);
1132 }
1133
1134 pfree(objDesc);
1135 }
1136
1137 if (numNotReportedClient > 0)
1138 appendStringInfo(&clientdetail, ngettext("\nand %d other object "
1139 "(see server log for list)",
1140 "\nand %d other objects "
1141 "(see server log for list)",
1142 numNotReportedClient),
1143 numNotReportedClient);
1144
1145 if (!ok)
1146 {
1147 if (origObject)
1148 ereport(ERROR,
1149 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1150 errmsg("cannot drop %s because other objects depend on it",
1151 getObjectDescription(origObject, false)),
1152 errdetail_internal("%s", clientdetail.data),
1153 errdetail_log("%s", logdetail.data),
1154 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1155 else
1156 ereport(ERROR,
1157 (errcode(ERRCODE_DEPENDENT_OBJECTS_STILL_EXIST),
1158 errmsg("cannot drop desired object(s) because other objects depend on them"),
1159 errdetail_internal("%s", clientdetail.data),
1160 errdetail_log("%s", logdetail.data),
1161 errhint("Use DROP ... CASCADE to drop the dependent objects too.")));
1162 }
1163 else if (numReportedClient > 1)
1164 {
1165 ereport(msglevel,
1166 (errmsg_plural("drop cascades to %d other object",
1167 "drop cascades to %d other objects",
1168 numReportedClient + numNotReportedClient,
1169 numReportedClient + numNotReportedClient),
1170 errdetail_internal("%s", clientdetail.data),
1171 errdetail_log("%s", logdetail.data)));
1172 }
1173 else if (numReportedClient == 1)
1174 {
1175 /* we just use the single item as-is */
1176 ereport(msglevel,
1177 (errmsg_internal("%s", clientdetail.data)));
1178 }
1179
1180 pfree(clientdetail.data);
1181 pfree(logdetail.data);
1182}
1183
1184/*
1185 * Drop an object by OID. Works for most catalogs, if no special processing
1186 * is needed.
1187 */
1188static void
1189 DropObjectById(const ObjectAddress *object)
1190{
1191 int cacheId;
1192 Relation rel;
1193 HeapTuple tup;
1194
1195 cacheId = get_object_catcache_oid(object->classId);
1196
1197 rel = table_open(object->classId, RowExclusiveLock);
1198
1199 /*
1200 * Use the system cache for the oid column, if one exists.
1201 */
1202 if (cacheId >= 0)
1203 {
1204 tup = SearchSysCache1(cacheId, ObjectIdGetDatum(object->objectId));
1205 if (!HeapTupleIsValid(tup))
1206 elog(ERROR, "cache lookup failed for %s %u",
1207 get_object_class_descr(object->classId), object->objectId);
1208
1209 CatalogTupleDelete(rel, &tup->t_self);
1210
1211 ReleaseSysCache(tup);
1212 }
1213 else
1214 {
1215 ScanKeyData skey[1];
1216 SysScanDesc scan;
1217
1218 ScanKeyInit(&skey[0],
1219 get_object_attnum_oid(object->classId),
1220 BTEqualStrategyNumber, F_OIDEQ,
1221 ObjectIdGetDatum(object->objectId));
1222
1223 scan = systable_beginscan(rel, get_object_oid_index(object->classId), true,
1224 NULL, 1, skey);
1225
1226 /* we expect exactly one match */
1227 tup = systable_getnext(scan);
1228 if (!HeapTupleIsValid(tup))
1229 elog(ERROR, "could not find tuple for %s %u",
1230 get_object_class_descr(object->classId), object->objectId);
1231
1232 CatalogTupleDelete(rel, &tup->t_self);
1233
1234 systable_endscan(scan);
1235 }
1236
1237 table_close(rel, RowExclusiveLock);
1238}
1239
1240/*
1241 * deleteOneObject: delete a single object for performDeletion.
1242 *
1243 * *depRel is the already-open pg_depend relation.
1244 */
1245static void
1246 deleteOneObject(const ObjectAddress *object, Relation *depRel, int flags)
1247{
1248 ScanKeyData key[3];
1249 int nkeys;
1250 SysScanDesc scan;
1251 HeapTuple tup;
1252
1253 /* DROP hook of the objects being removed */
1254 InvokeObjectDropHookArg(object->classId, object->objectId,
1255 object->objectSubId, flags);
1256
1257 /*
1258 * Close depRel if we are doing a drop concurrently. The object deletion
1259 * subroutine will commit the current transaction, so we can't keep the
1260 * relation open across doDeletion().
1261 */
1262 if (flags & PERFORM_DELETION_CONCURRENTLY)
1263 table_close(*depRel, RowExclusiveLock);
1264
1265 /*
1266 * Delete the object itself, in an object-type-dependent way.
1267 *
1268 * We used to do this after removing the outgoing dependency links, but it
1269 * seems just as reasonable to do it beforehand. In the concurrent case
1270 * we *must* do it in this order, because we can't make any transactional
1271 * updates before calling doDeletion() --- they'd get committed right
1272 * away, which is not cool if the deletion then fails.
1273 */
1274 doDeletion(object, flags);
1275
1276 /*
1277 * Reopen depRel if we closed it above
1278 */
1279 if (flags & PERFORM_DELETION_CONCURRENTLY)
1280 *depRel = table_open(DependRelationId, RowExclusiveLock);
1281
1282 /*
1283 * Now remove any pg_depend records that link from this object to others.
1284 * (Any records linking to this object should be gone already.)
1285 *
1286 * When dropping a whole object (subId = 0), remove all pg_depend records
1287 * for its sub-objects too.
1288 */
1289 ScanKeyInit(&key[0],
1290 Anum_pg_depend_classid,
1291 BTEqualStrategyNumber, F_OIDEQ,
1292 ObjectIdGetDatum(object->classId));
1293 ScanKeyInit(&key[1],
1294 Anum_pg_depend_objid,
1295 BTEqualStrategyNumber, F_OIDEQ,
1296 ObjectIdGetDatum(object->objectId));
1297 if (object->objectSubId != 0)
1298 {
1299 ScanKeyInit(&key[2],
1300 Anum_pg_depend_objsubid,
1301 BTEqualStrategyNumber, F_INT4EQ,
1302 Int32GetDatum(object->objectSubId));
1303 nkeys = 3;
1304 }
1305 else
1306 nkeys = 2;
1307
1308 scan = systable_beginscan(*depRel, DependDependerIndexId, true,
1309 NULL, nkeys, key);
1310
1311 while (HeapTupleIsValid(tup = systable_getnext(scan)))
1312 {
1313 CatalogTupleDelete(*depRel, &tup->t_self);
1314 }
1315
1316 systable_endscan(scan);
1317
1318 /*
1319 * Delete shared dependency references related to this object. Again, if
1320 * subId = 0, remove records for sub-objects too.
1321 */
1322 deleteSharedDependencyRecordsFor(object->classId, object->objectId,
1323 object->objectSubId);
1324
1325
1326 /*
1327 * Delete any comments, security labels, or initial privileges associated
1328 * with this object. (This is a convenient place to do these things,
1329 * rather than having every object type know to do it.) As above, all
1330 * these functions must remove records for sub-objects too if the subid is
1331 * zero.
1332 */
1333 DeleteComments(object->objectId, object->classId, object->objectSubId);
1334 DeleteSecurityLabel(object);
1335 DeleteInitPrivs(object);
1336
1337 /*
1338 * CommandCounterIncrement here to ensure that preceding changes are all
1339 * visible to the next deletion step.
1340 */
1341 CommandCounterIncrement();
1342
1343 /*
1344 * And we're done!
1345 */
1346}
1347
1348/*
1349 * doDeletion: actually delete a single object
1350 */
1351static void
1352 doDeletion(const ObjectAddress *object, int flags)
1353{
1354 switch (object->classId)
1355 {
1356 case RelationRelationId:
1357 {
1358 char relKind = get_rel_relkind(object->objectId);
1359
1360 if (relKind == RELKIND_INDEX ||
1361 relKind == RELKIND_PARTITIONED_INDEX)
1362 {
1363 bool concurrent = ((flags & PERFORM_DELETION_CONCURRENTLY) != 0);
1364 bool concurrent_lock_mode = ((flags & PERFORM_DELETION_CONCURRENT_LOCK) != 0);
1365
1366 Assert(object->objectSubId == 0);
1367 index_drop(object->objectId, concurrent, concurrent_lock_mode);
1368 }
1369 else
1370 {
1371 if (object->objectSubId != 0)
1372 RemoveAttributeById(object->objectId,
1373 object->objectSubId);
1374 else
1375 heap_drop_with_catalog(object->objectId);
1376 }
1377
1378 /*
1379 * for a sequence, in addition to dropping the heap, also
1380 * delete pg_sequence tuple
1381 */
1382 if (relKind == RELKIND_SEQUENCE)
1383 DeleteSequenceTuple(object->objectId);
1384 break;
1385 }
1386
1387 case ProcedureRelationId:
1388 RemoveFunctionById(object->objectId);
1389 break;
1390
1391 case TypeRelationId:
1392 RemoveTypeById(object->objectId);
1393 break;
1394
1395 case ConstraintRelationId:
1396 RemoveConstraintById(object->objectId);
1397 break;
1398
1399 case AttrDefaultRelationId:
1400 RemoveAttrDefaultById(object->objectId);
1401 break;
1402
1403 case LargeObjectRelationId:
1404 LargeObjectDrop(object->objectId);
1405 break;
1406
1407 case OperatorRelationId:
1408 RemoveOperatorById(object->objectId);
1409 break;
1410
1411 case RewriteRelationId:
1412 RemoveRewriteRuleById(object->objectId);
1413 break;
1414
1415 case TriggerRelationId:
1416 RemoveTriggerById(object->objectId);
1417 break;
1418
1419 case StatisticExtRelationId:
1420 RemoveStatisticsById(object->objectId);
1421 break;
1422
1423 case TSConfigRelationId:
1424 RemoveTSConfigurationById(object->objectId);
1425 break;
1426
1427 case ExtensionRelationId:
1428 RemoveExtensionById(object->objectId);
1429 break;
1430
1431 case PolicyRelationId:
1432 RemovePolicyById(object->objectId);
1433 break;
1434
1435 case PublicationNamespaceRelationId:
1436 RemovePublicationSchemaById(object->objectId);
1437 break;
1438
1439 case PublicationRelRelationId:
1440 RemovePublicationRelById(object->objectId);
1441 break;
1442
1443 case PublicationRelationId:
1444 RemovePublicationById(object->objectId);
1445 break;
1446
1447 case CastRelationId:
1448 case CollationRelationId:
1449 case ConversionRelationId:
1450 case LanguageRelationId:
1451 case OperatorClassRelationId:
1452 case OperatorFamilyRelationId:
1453 case AccessMethodRelationId:
1454 case AccessMethodOperatorRelationId:
1455 case AccessMethodProcedureRelationId:
1456 case NamespaceRelationId:
1457 case TSParserRelationId:
1458 case TSDictionaryRelationId:
1459 case TSTemplateRelationId:
1460 case ForeignDataWrapperRelationId:
1461 case ForeignServerRelationId:
1462 case UserMappingRelationId:
1463 case DefaultAclRelationId:
1464 case EventTriggerRelationId:
1465 case TransformRelationId:
1466 case AuthMemRelationId:
1467 DropObjectById(object);
1468 break;
1469
1470 /*
1471 * These global object types are not supported here.
1472 */
1473 case AuthIdRelationId:
1474 case DatabaseRelationId:
1475 case TableSpaceRelationId:
1476 case SubscriptionRelationId:
1477 case ParameterAclRelationId:
1478 elog(ERROR, "global objects cannot be deleted by doDeletion");
1479 break;
1480
1481 default:
1482 elog(ERROR, "unsupported object class: %u", object->classId);
1483 }
1484}
1485
1486/*
1487 * AcquireDeletionLock - acquire a suitable lock for deleting an object
1488 *
1489 * Accepts the same flags as performDeletion (though currently only
1490 * PERFORM_DELETION_CONCURRENTLY does anything).
1491 *
1492 * We use LockRelation for relations, and otherwise LockSharedObject or
1493 * LockDatabaseObject as appropriate for the object type.
1494 */
1495void
1496 AcquireDeletionLock(const ObjectAddress *object, int flags)
1497{
1498 if (object->classId == RelationRelationId)
1499 {
1500 /*
1501 * In DROP INDEX CONCURRENTLY, take only ShareUpdateExclusiveLock on
1502 * the index for the moment. index_drop() will promote the lock once
1503 * it's safe to do so. In all other cases we need full exclusive
1504 * lock.
1505 */
1506 if (flags & PERFORM_DELETION_CONCURRENTLY)
1507 LockRelationOid(object->objectId, ShareUpdateExclusiveLock);
1508 else
1509 LockRelationOid(object->objectId, AccessExclusiveLock);
1510 }
1511 else if (object->classId == AuthMemRelationId)
1512 LockSharedObject(object->classId, object->objectId, 0,
1513 AccessExclusiveLock);
1514 else
1515 {
1516 /* assume we should lock the whole object not a sub-object */
1517 LockDatabaseObject(object->classId, object->objectId, 0,
1518 AccessExclusiveLock);
1519 }
1520}
1521
1522/*
1523 * ReleaseDeletionLock - release an object deletion lock
1524 *
1525 * Companion to AcquireDeletionLock.
1526 */
1527void
1528 ReleaseDeletionLock(const ObjectAddress *object)
1529{
1530 if (object->classId == RelationRelationId)
1531 UnlockRelationOid(object->objectId, AccessExclusiveLock);
1532 else
1533 /* assume we should lock the whole object not a sub-object */
1534 UnlockDatabaseObject(object->classId, object->objectId, 0,
1535 AccessExclusiveLock);
1536}
1537
1538/*
1539 * recordDependencyOnExpr - find expression dependencies
1540 *
1541 * This is used to find the dependencies of rules, constraint expressions,
1542 * etc.
1543 *
1544 * Given an expression or query in node-tree form, find all the objects
1545 * it refers to (tables, columns, operators, functions, etc). Record
1546 * a dependency of the specified type from the given depender object
1547 * to each object mentioned in the expression.
1548 *
1549 * rtable is the rangetable to be used to interpret Vars with varlevelsup=0.
1550 * It can be NIL if no such variables are expected.
1551 */
1552void
1553 recordDependencyOnExpr(const ObjectAddress *depender,
1554 Node *expr, List *rtable,
1555 DependencyType behavior)
1556{
1557 find_expr_references_context context;
1558
1559 context.addrs = new_object_addresses();
1560
1561 /* Set up interpretation for Vars at varlevelsup = 0 */
1562 context.rtables = list_make1(rtable);
1563
1564 /* Scan the expression tree for referenceable objects */
1565 find_expr_references_walker(expr, &context);
1566
1567 /* Remove any duplicates */
1568 eliminate_duplicate_dependencies(context.addrs);
1569
1570 /* And record 'em */
1571 recordMultipleDependencies(depender,
1572 context.addrs->refs, context.addrs->numrefs,
1573 behavior);
1574
1575 free_object_addresses(context.addrs);
1576}
1577
1578/*
1579 * recordDependencyOnSingleRelExpr - find expression dependencies
1580 *
1581 * As above, but only one relation is expected to be referenced (with
1582 * varno = 1 and varlevelsup = 0). Pass the relation OID instead of a
1583 * range table. An additional frammish is that dependencies on that
1584 * relation's component columns will be marked with 'self_behavior',
1585 * whereas 'behavior' is used for everything else; also, if 'reverse_self'
1586 * is true, those dependencies are reversed so that the columns are made
1587 * to depend on the table not vice versa.
1588 *
1589 * NOTE: the caller should ensure that a whole-table dependency on the
1590 * specified relation is created separately, if one is needed. In particular,
1591 * a whole-row Var "relation.*" will not cause this routine to emit any
1592 * dependency item. This is appropriate behavior for subexpressions of an
1593 * ordinary query, so other cases need to cope as necessary.
1594 */
1595void
1596 recordDependencyOnSingleRelExpr(const ObjectAddress *depender,
1597 Node *expr, Oid relId,
1598 DependencyType behavior,
1599 DependencyType self_behavior,
1600 bool reverse_self)
1601{
1602 find_expr_references_context context;
1603 RangeTblEntry rte = {0};
1604
1605 context.addrs = new_object_addresses();
1606
1607 /* We gin up a rather bogus rangetable list to handle Vars */
1608 rte.type = T_RangeTblEntry;
1609 rte.rtekind = RTE_RELATION;
1610 rte.relid = relId;
1611 rte.relkind = RELKIND_RELATION; /* no need for exactness here */
1612 rte.rellockmode = AccessShareLock;
1613
1614 context.rtables = list_make1(list_make1(&rte));
1615
1616 /* Scan the expression tree for referenceable objects */
1617 find_expr_references_walker(expr, &context);
1618
1619 /* Remove any duplicates */
1620 eliminate_duplicate_dependencies(context.addrs);
1621
1622 /* Separate self-dependencies if necessary */
1623 if ((behavior != self_behavior || reverse_self) &&
1624 context.addrs->numrefs > 0)
1625 {
1626 ObjectAddresses *self_addrs;
1627 ObjectAddress *outobj;
1628 int oldref,
1629 outrefs;
1630
1631 self_addrs = new_object_addresses();
1632
1633 outobj = context.addrs->refs;
1634 outrefs = 0;
1635 for (oldref = 0; oldref < context.addrs->numrefs; oldref++)
1636 {
1637 ObjectAddress *thisobj = context.addrs->refs + oldref;
1638
1639 if (thisobj->classId == RelationRelationId &&
1640 thisobj->objectId == relId)
1641 {
1642 /* Move this ref into self_addrs */
1643 add_exact_object_address(thisobj, self_addrs);
1644 }
1645 else
1646 {
1647 /* Keep it in context.addrs */
1648 *outobj = *thisobj;
1649 outobj++;
1650 outrefs++;
1651 }
1652 }
1653 context.addrs->numrefs = outrefs;
1654
1655 /* Record the self-dependencies with the appropriate direction */
1656 if (!reverse_self)
1657 recordMultipleDependencies(depender,
1658 self_addrs->refs, self_addrs->numrefs,
1659 self_behavior);
1660 else
1661 {
1662 /* Can't use recordMultipleDependencies, so do it the hard way */
1663 int selfref;
1664
1665 for (selfref = 0; selfref < self_addrs->numrefs; selfref++)
1666 {
1667 ObjectAddress *thisobj = self_addrs->refs + selfref;
1668
1669 recordDependencyOn(thisobj, depender, self_behavior);
1670 }
1671 }
1672
1673 free_object_addresses(self_addrs);
1674 }
1675
1676 /* Record the external dependencies */
1677 recordMultipleDependencies(depender,
1678 context.addrs->refs, context.addrs->numrefs,
1679 behavior);
1680
1681 free_object_addresses(context.addrs);
1682}
1683
1684/*
1685 * Recursively search an expression tree for object references.
1686 *
1687 * Note: in many cases we do not need to create dependencies on the datatypes
1688 * involved in an expression, because we'll have an indirect dependency via
1689 * some other object. For instance Var nodes depend on a column which depends
1690 * on the datatype, and OpExpr nodes depend on the operator which depends on
1691 * the datatype. However we do need a type dependency if there is no such
1692 * indirect dependency, as for example in Const and CoerceToDomain nodes.
1693 *
1694 * Similarly, we don't need to create dependencies on collations except where
1695 * the collation is being freshly introduced to the expression.
1696 */
1697static bool
1698 find_expr_references_walker(Node *node,
1699 find_expr_references_context *context)
1700{
1701 if (node == NULL)
1702 return false;
1703 if (IsA(node, Var))
1704 {
1705 Var *var = (Var *) node;
1706 List *rtable;
1707 RangeTblEntry *rte;
1708
1709 /* Find matching rtable entry, or complain if not found */
1710 if (var->varlevelsup >= list_length(context->rtables))
1711 elog(ERROR, "invalid varlevelsup %d", var->varlevelsup);
1712 rtable = (List *) list_nth(context->rtables, var->varlevelsup);
1713 if (var->varno <= 0 || var->varno > list_length(rtable))
1714 elog(ERROR, "invalid varno %d", var->varno);
1715 rte = rt_fetch(var->varno, rtable);
1716
1717 /*
1718 * A whole-row Var references no specific columns, so adds no new
1719 * dependency. (We assume that there is a whole-table dependency
1720 * arising from each underlying rangetable entry. While we could
1721 * record such a dependency when finding a whole-row Var that
1722 * references a relation directly, it's quite unclear how to extend
1723 * that to whole-row Vars for JOINs, so it seems better to leave the
1724 * responsibility with the range table. Note that this poses some
1725 * risks for identifying dependencies of stand-alone expressions:
1726 * whole-table references may need to be created separately.)
1727 */
1728 if (var->varattno == InvalidAttrNumber)
1729 return false;
1730 if (rte->rtekind == RTE_RELATION)
1731 {
1732 /* If it's a plain relation, reference this column */
1733 add_object_address(RelationRelationId, rte->relid, var->varattno,
1734 context->addrs);
1735 }
1736 else if (rte->rtekind == RTE_FUNCTION)
1737 {
1738 /* Might need to add a dependency on a composite type's column */
1739 /* (done out of line, because it's a bit bulky) */
1740 process_function_rte_ref(rte, var->varattno, context);
1741 }
1742
1743 /*
1744 * Vars referencing other RTE types require no additional work. In
1745 * particular, a join alias Var can be ignored, because it must
1746 * reference a merged USING column. The relevant join input columns
1747 * will also be referenced in the join qual, and any type coercion
1748 * functions involved in the alias expression will be dealt with when
1749 * we scan the RTE itself.
1750 */
1751 return false;
1752 }
1753 else if (IsA(node, Const))
1754 {
1755 Const *con = (Const *) node;
1756 Oid objoid;
1757
1758 /* A constant must depend on the constant's datatype */
1759 add_object_address(TypeRelationId, con->consttype, 0,
1760 context->addrs);
1761
1762 /*
1763 * We must also depend on the constant's collation: it could be
1764 * different from the datatype's, if a CollateExpr was const-folded to
1765 * a simple constant. However we can save work in the most common
1766 * case where the collation is "default", since we know that's pinned.
1767 */
1768 if (OidIsValid(con->constcollid) &&
1769 con->constcollid != DEFAULT_COLLATION_OID)
1770 add_object_address(CollationRelationId, con->constcollid, 0,
1771 context->addrs);
1772
1773 /*
1774 * If it's a regclass or similar literal referring to an existing
1775 * object, add a reference to that object. (Currently, only the
1776 * regclass and regconfig cases have any likely use, but we may as
1777 * well handle all the OID-alias datatypes consistently.)
1778 */
1779 if (!con->constisnull)
1780 {
1781 switch (con->consttype)
1782 {
1783 case REGPROCOID:
1784 case REGPROCEDUREOID:
1785 objoid = DatumGetObjectId(con->constvalue);
1786 if (SearchSysCacheExists1(PROCOID,
1787 ObjectIdGetDatum(objoid)))
1788 add_object_address(ProcedureRelationId, objoid, 0,
1789 context->addrs);
1790 break;
1791 case REGOPEROID:
1792 case REGOPERATOROID:
1793 objoid = DatumGetObjectId(con->constvalue);
1794 if (SearchSysCacheExists1(OPEROID,
1795 ObjectIdGetDatum(objoid)))
1796 add_object_address(OperatorRelationId, objoid, 0,
1797 context->addrs);
1798 break;
1799 case REGCLASSOID:
1800 objoid = DatumGetObjectId(con->constvalue);
1801 if (SearchSysCacheExists1(RELOID,
1802 ObjectIdGetDatum(objoid)))
1803 add_object_address(RelationRelationId, objoid, 0,
1804 context->addrs);
1805 break;
1806 case REGTYPEOID:
1807 objoid = DatumGetObjectId(con->constvalue);
1808 if (SearchSysCacheExists1(TYPEOID,
1809 ObjectIdGetDatum(objoid)))
1810 add_object_address(TypeRelationId, objoid, 0,
1811 context->addrs);
1812 break;
1813 case REGCOLLATIONOID:
1814 objoid = DatumGetObjectId(con->constvalue);
1815 if (SearchSysCacheExists1(COLLOID,
1816 ObjectIdGetDatum(objoid)))
1817 add_object_address(CollationRelationId, objoid, 0,
1818 context->addrs);
1819 break;
1820 case REGCONFIGOID:
1821 objoid = DatumGetObjectId(con->constvalue);
1822 if (SearchSysCacheExists1(TSCONFIGOID,
1823 ObjectIdGetDatum(objoid)))
1824 add_object_address(TSConfigRelationId, objoid, 0,
1825 context->addrs);
1826 break;
1827 case REGDICTIONARYOID:
1828 objoid = DatumGetObjectId(con->constvalue);
1829 if (SearchSysCacheExists1(TSDICTOID,
1830 ObjectIdGetDatum(objoid)))
1831 add_object_address(TSDictionaryRelationId, objoid, 0,
1832 context->addrs);
1833 break;
1834
1835 case REGNAMESPACEOID:
1836 objoid = DatumGetObjectId(con->constvalue);
1837 if (SearchSysCacheExists1(NAMESPACEOID,
1838 ObjectIdGetDatum(objoid)))
1839 add_object_address(NamespaceRelationId, objoid, 0,
1840 context->addrs);
1841 break;
1842
1843 /*
1844 * Dependencies for regrole should be shared among all
1845 * databases, so explicitly inhibit to have dependencies.
1846 */
1847 case REGROLEOID:
1848 ereport(ERROR,
1849 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1850 errmsg("constant of the type %s cannot be used here",
1851 "regrole")));
1852 break;
1853
1854 /*
1855 * Dependencies for regdatabase should be shared among all
1856 * databases, so explicitly inhibit to have dependencies.
1857 */
1858 case REGDATABASEOID:
1859 ereport(ERROR,
1860 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
1861 errmsg("constant of the type %s cannot be used here",
1862 "regdatabase")));
1863 break;
1864 }
1865 }
1866 return false;
1867 }
1868 else if (IsA(node, Param))
1869 {
1870 Param *param = (Param *) node;
1871
1872 /* A parameter must depend on the parameter's datatype */
1873 add_object_address(TypeRelationId, param->paramtype, 0,
1874 context->addrs);
1875 /* and its collation, just as for Consts */
1876 if (OidIsValid(param->paramcollid) &&
1877 param->paramcollid != DEFAULT_COLLATION_OID)
1878 add_object_address(CollationRelationId, param->paramcollid, 0,
1879 context->addrs);
1880 }
1881 else if (IsA(node, FuncExpr))
1882 {
1883 FuncExpr *funcexpr = (FuncExpr *) node;
1884
1885 add_object_address(ProcedureRelationId, funcexpr->funcid, 0,
1886 context->addrs);
1887 /* fall through to examine arguments */
1888 }
1889 else if (IsA(node, OpExpr))
1890 {
1891 OpExpr *opexpr = (OpExpr *) node;
1892
1893 add_object_address(OperatorRelationId, opexpr->opno, 0,
1894 context->addrs);
1895 /* fall through to examine arguments */
1896 }
1897 else if (IsA(node, DistinctExpr))
1898 {
1899 DistinctExpr *distinctexpr = (DistinctExpr *) node;
1900
1901 add_object_address(OperatorRelationId, distinctexpr->opno, 0,
1902 context->addrs);
1903 /* fall through to examine arguments */
1904 }
1905 else if (IsA(node, NullIfExpr))
1906 {
1907 NullIfExpr *nullifexpr = (NullIfExpr *) node;
1908
1909 add_object_address(OperatorRelationId, nullifexpr->opno, 0,
1910 context->addrs);
1911 /* fall through to examine arguments */
1912 }
1913 else if (IsA(node, ScalarArrayOpExpr))
1914 {
1915 ScalarArrayOpExpr *opexpr = (ScalarArrayOpExpr *) node;
1916
1917 add_object_address(OperatorRelationId, opexpr->opno, 0,
1918 context->addrs);
1919 /* fall through to examine arguments */
1920 }
1921 else if (IsA(node, Aggref))
1922 {
1923 Aggref *aggref = (Aggref *) node;
1924
1925 add_object_address(ProcedureRelationId, aggref->aggfnoid, 0,
1926 context->addrs);
1927 /* fall through to examine arguments */
1928 }
1929 else if (IsA(node, WindowFunc))
1930 {
1931 WindowFunc *wfunc = (WindowFunc *) node;
1932
1933 add_object_address(ProcedureRelationId, wfunc->winfnoid, 0,
1934 context->addrs);
1935 /* fall through to examine arguments */
1936 }
1937 else if (IsA(node, SubscriptingRef))
1938 {
1939 SubscriptingRef *sbsref = (SubscriptingRef *) node;
1940
1941 /*
1942 * The refexpr should provide adequate dependency on refcontainertype,
1943 * and that type in turn depends on refelemtype. However, a custom
1944 * subscripting handler might set refrestype to something different
1945 * from either of those, in which case we'd better record it.
1946 */
1947 if (sbsref->refrestype != sbsref->refcontainertype &&
1948 sbsref->refrestype != sbsref->refelemtype)
1949 add_object_address(TypeRelationId, sbsref->refrestype, 0,
1950 context->addrs);
1951 /* fall through to examine arguments */
1952 }
1953 else if (IsA(node, SubPlan))
1954 {
1955 /* Extra work needed here if we ever need this case */
1956 elog(ERROR, "already-planned subqueries not supported");
1957 }
1958 else if (IsA(node, FieldSelect))
1959 {
1960 FieldSelect *fselect = (FieldSelect *) node;
1961 Oid argtype = getBaseType(exprType((Node *) fselect->arg));
1962 Oid reltype = get_typ_typrelid(argtype);
1963
1964 /*
1965 * We need a dependency on the specific column named in FieldSelect,
1966 * assuming we can identify the pg_class OID for it. (Probably we
1967 * always can at the moment, but in future it might be possible for
1968 * argtype to be RECORDOID.) If we can make a column dependency then
1969 * we shouldn't need a dependency on the column's type; but if we
1970 * can't, make a dependency on the type, as it might not appear
1971 * anywhere else in the expression.
1972 */
1973 if (OidIsValid(reltype))
1974 add_object_address(RelationRelationId, reltype, fselect->fieldnum,
1975 context->addrs);
1976 else
1977 add_object_address(TypeRelationId, fselect->resulttype, 0,
1978 context->addrs);
1979 /* the collation might not be referenced anywhere else, either */
1980 if (OidIsValid(fselect->resultcollid) &&
1981 fselect->resultcollid != DEFAULT_COLLATION_OID)
1982 add_object_address(CollationRelationId, fselect->resultcollid, 0,
1983 context->addrs);
1984 }
1985 else if (IsA(node, FieldStore))
1986 {
1987 FieldStore *fstore = (FieldStore *) node;
1988 Oid reltype = get_typ_typrelid(fstore->resulttype);
1989
1990 /* similar considerations to FieldSelect, but multiple column(s) */
1991 if (OidIsValid(reltype))
1992 {
1993 ListCell *l;
1994
1995 foreach(l, fstore->fieldnums)
1996 add_object_address(RelationRelationId, reltype, lfirst_int(l),
1997 context->addrs);
1998 }
1999 else
2000 add_object_address(TypeRelationId, fstore->resulttype, 0,
2001 context->addrs);
2002 }
2003 else if (IsA(node, RelabelType))
2004 {
2005 RelabelType *relab = (RelabelType *) node;
2006
2007 /* since there is no function dependency, need to depend on type */
2008 add_object_address(TypeRelationId, relab->resulttype, 0,
2009 context->addrs);
2010 /* the collation might not be referenced anywhere else, either */
2011 if (OidIsValid(relab->resultcollid) &&
2012 relab->resultcollid != DEFAULT_COLLATION_OID)
2013 add_object_address(CollationRelationId, relab->resultcollid, 0,
2014 context->addrs);
2015 }
2016 else if (IsA(node, CoerceViaIO))
2017 {
2018 CoerceViaIO *iocoerce = (CoerceViaIO *) node;
2019
2020 /* since there is no exposed function, need to depend on type */
2021 add_object_address(TypeRelationId, iocoerce->resulttype, 0,
2022 context->addrs);
2023 /* the collation might not be referenced anywhere else, either */
2024 if (OidIsValid(iocoerce->resultcollid) &&
2025 iocoerce->resultcollid != DEFAULT_COLLATION_OID)
2026 add_object_address(CollationRelationId, iocoerce->resultcollid, 0,
2027 context->addrs);
2028 }
2029 else if (IsA(node, ArrayCoerceExpr))
2030 {
2031 ArrayCoerceExpr *acoerce = (ArrayCoerceExpr *) node;
2032
2033 /* as above, depend on type */
2034 add_object_address(TypeRelationId, acoerce->resulttype, 0,
2035 context->addrs);
2036 /* the collation might not be referenced anywhere else, either */
2037 if (OidIsValid(acoerce->resultcollid) &&
2038 acoerce->resultcollid != DEFAULT_COLLATION_OID)
2039 add_object_address(CollationRelationId, acoerce->resultcollid, 0,
2040 context->addrs);
2041 /* fall through to examine arguments */
2042 }
2043 else if (IsA(node, ConvertRowtypeExpr))
2044 {
2045 ConvertRowtypeExpr *cvt = (ConvertRowtypeExpr *) node;
2046
2047 /* since there is no function dependency, need to depend on type */
2048 add_object_address(TypeRelationId, cvt->resulttype, 0,
2049 context->addrs);
2050 }
2051 else if (IsA(node, CollateExpr))
2052 {
2053 CollateExpr *coll = (CollateExpr *) node;
2054
2055 add_object_address(CollationRelationId, coll->collOid, 0,
2056 context->addrs);
2057 }
2058 else if (IsA(node, RowExpr))
2059 {
2060 RowExpr *rowexpr = (RowExpr *) node;
2061
2062 add_object_address(TypeRelationId, rowexpr->row_typeid, 0,
2063 context->addrs);
2064 }
2065 else if (IsA(node, RowCompareExpr))
2066 {
2067 RowCompareExpr *rcexpr = (RowCompareExpr *) node;
2068 ListCell *l;
2069
2070 foreach(l, rcexpr->opnos)
2071 {
2072 add_object_address(OperatorRelationId, lfirst_oid(l), 0,
2073 context->addrs);
2074 }
2075 foreach(l, rcexpr->opfamilies)
2076 {
2077 add_object_address(OperatorFamilyRelationId, lfirst_oid(l), 0,
2078 context->addrs);
2079 }
2080 /* fall through to examine arguments */
2081 }
2082 else if (IsA(node, CoerceToDomain))
2083 {
2084 CoerceToDomain *cd = (CoerceToDomain *) node;
2085
2086 add_object_address(TypeRelationId, cd->resulttype, 0,
2087 context->addrs);
2088 }
2089 else if (IsA(node, NextValueExpr))
2090 {
2091 NextValueExpr *nve = (NextValueExpr *) node;
2092
2093 add_object_address(RelationRelationId, nve->seqid, 0,
2094 context->addrs);
2095 }
2096 else if (IsA(node, OnConflictExpr))
2097 {
2098 OnConflictExpr *onconflict = (OnConflictExpr *) node;
2099
2100 if (OidIsValid(onconflict->constraint))
2101 add_object_address(ConstraintRelationId, onconflict->constraint, 0,
2102 context->addrs);
2103 /* fall through to examine arguments */
2104 }
2105 else if (IsA(node, SortGroupClause))
2106 {
2107 SortGroupClause *sgc = (SortGroupClause *) node;
2108
2109 add_object_address(OperatorRelationId, sgc->eqop, 0,
2110 context->addrs);
2111 if (OidIsValid(sgc->sortop))
2112 add_object_address(OperatorRelationId, sgc->sortop, 0,
2113 context->addrs);
2114 return false;
2115 }
2116 else if (IsA(node, WindowClause))
2117 {
2118 WindowClause *wc = (WindowClause *) node;
2119
2120 if (OidIsValid(wc->startInRangeFunc))
2121 add_object_address(ProcedureRelationId, wc->startInRangeFunc, 0,
2122 context->addrs);
2123 if (OidIsValid(wc->endInRangeFunc))
2124 add_object_address(ProcedureRelationId, wc->endInRangeFunc, 0,
2125 context->addrs);
2126 if (OidIsValid(wc->inRangeColl) &&
2127 wc->inRangeColl != DEFAULT_COLLATION_OID)
2128 add_object_address(CollationRelationId, wc->inRangeColl, 0,
2129 context->addrs);
2130 /* fall through to examine substructure */
2131 }
2132 else if (IsA(node, CTECycleClause))
2133 {
2134 CTECycleClause *cc = (CTECycleClause *) node;
2135
2136 if (OidIsValid(cc->cycle_mark_type))
2137 add_object_address(TypeRelationId, cc->cycle_mark_type, 0,
2138 context->addrs);
2139 if (OidIsValid(cc->cycle_mark_collation))
2140 add_object_address(CollationRelationId, cc->cycle_mark_collation, 0,
2141 context->addrs);
2142 if (OidIsValid(cc->cycle_mark_neop))
2143 add_object_address(OperatorRelationId, cc->cycle_mark_neop, 0,
2144 context->addrs);
2145 /* fall through to examine substructure */
2146 }
2147 else if (IsA(node, Query))
2148 {
2149 /* Recurse into RTE subquery or not-yet-planned sublink subquery */
2150 Query *query = (Query *) node;
2151 ListCell *lc;
2152 bool result;
2153
2154 /*
2155 * Add whole-relation refs for each plain relation mentioned in the
2156 * subquery's rtable, and ensure we add refs for any type-coercion
2157 * functions used in join alias lists.
2158 *
2159 * Note: query_tree_walker takes care of recursing into RTE_FUNCTION
2160 * RTEs, subqueries, etc, so no need to do that here. But we must
2161 * tell it not to visit join alias lists, or we'll add refs for join
2162 * input columns whether or not they are actually used in our query.
2163 *
2164 * Note: we don't need to worry about collations mentioned in
2165 * RTE_VALUES or RTE_CTE RTEs, because those must just duplicate
2166 * collations referenced in other parts of the Query. We do have to
2167 * worry about collations mentioned in RTE_FUNCTION, but we take care
2168 * of those when we recurse to the RangeTblFunction node(s).
2169 */
2170 foreach(lc, query->rtable)
2171 {
2172 RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
2173
2174 switch (rte->rtekind)
2175 {
2176 case RTE_RELATION:
2177 add_object_address(RelationRelationId, rte->relid, 0,
2178 context->addrs);
2179 break;
2180 case RTE_JOIN:
2181
2182 /*
2183 * Examine joinaliasvars entries only for merged JOIN
2184 * USING columns. Only those entries could contain
2185 * type-coercion functions. Also, their join input
2186 * columns must be referenced in the join quals, so this
2187 * won't accidentally add refs to otherwise-unused join
2188 * input columns. (We want to ref the type coercion
2189 * functions even if the merged column isn't explicitly
2190 * used anywhere, to protect possible expansion of the
2191 * join RTE as a whole-row var, and because it seems like
2192 * a bad idea to allow dropping a function that's present
2193 * in our query tree, whether or not it could get called.)
2194 */
2195 context->rtables = lcons(query->rtable, context->rtables);
2196 for (int i = 0; i < rte->joinmergedcols; i++)
2197 {
2198 Node *aliasvar = list_nth(rte->joinaliasvars, i);
2199
2200 if (!IsA(aliasvar, Var))
2201 find_expr_references_walker(aliasvar, context);
2202 }
2203 context->rtables = list_delete_first(context->rtables);
2204 break;
2205 case RTE_NAMEDTUPLESTORE:
2206
2207 /*
2208 * Cataloged objects cannot depend on tuplestores, because
2209 * those have no cataloged representation. For now we can
2210 * call the tuplestore a "transition table" because that's
2211 * the only kind exposed to SQL, but someday we might have
2212 * to work harder.
2213 */
2214 ereport(ERROR,
2215 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
2216 errmsg("transition table \"%s\" cannot be referenced in a persistent object",
2217 rte->eref->aliasname)));
2218 break;
2219 default:
2220 /* Other RTE types can be ignored here */
2221 break;
2222 }
2223 }
2224
2225 /*
2226 * If the query is an INSERT or UPDATE, we should create a dependency
2227 * on each target column, to prevent the specific target column from
2228 * being dropped. Although we will visit the TargetEntry nodes again
2229 * during query_tree_walker, we won't have enough context to do this
2230 * conveniently, so do it here.
2231 */
2232 if (query->commandType == CMD_INSERT ||
2233 query->commandType == CMD_UPDATE)
2234 {
2235 RangeTblEntry *rte;
2236
2237 if (query->resultRelation <= 0 ||
2238 query->resultRelation > list_length(query->rtable))
2239 elog(ERROR, "invalid resultRelation %d",
2240 query->resultRelation);
2241 rte = rt_fetch(query->resultRelation, query->rtable);
2242 if (rte->rtekind == RTE_RELATION)
2243 {
2244 foreach(lc, query->targetList)
2245 {
2246 TargetEntry *tle = (TargetEntry *) lfirst(lc);
2247
2248 if (tle->resjunk)
2249 continue; /* ignore junk tlist items */
2250 add_object_address(RelationRelationId, rte->relid, tle->resno,
2251 context->addrs);
2252 }
2253 }
2254 }
2255
2256 /*
2257 * Add dependencies on constraints listed in query's constraintDeps
2258 */
2259 foreach(lc, query->constraintDeps)
2260 {
2261 add_object_address(ConstraintRelationId, lfirst_oid(lc), 0,
2262 context->addrs);
2263 }
2264
2265 /* Examine substructure of query */
2266 context->rtables = lcons(query->rtable, context->rtables);
2267 result = query_tree_walker(query,
2268 find_expr_references_walker,
2269 context,
2270 QTW_IGNORE_JOINALIASES |
2271 QTW_EXAMINE_SORTGROUP);
2272 context->rtables = list_delete_first(context->rtables);
2273 return result;
2274 }
2275 else if (IsA(node, SetOperationStmt))
2276 {
2277 SetOperationStmt *setop = (SetOperationStmt *) node;
2278
2279 /* we need to look at the groupClauses for operator references */
2280 find_expr_references_walker((Node *) setop->groupClauses, context);
2281 /* fall through to examine child nodes */
2282 }
2283 else if (IsA(node, RangeTblFunction))
2284 {
2285 RangeTblFunction *rtfunc = (RangeTblFunction *) node;
2286 ListCell *ct;
2287
2288 /*
2289 * Add refs for any datatypes and collations used in a column
2290 * definition list for a RECORD function. (For other cases, it should
2291 * be enough to depend on the function itself.)
2292 */
2293 foreach(ct, rtfunc->funccoltypes)
2294 {
2295 add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2296 context->addrs);
2297 }
2298 foreach(ct, rtfunc->funccolcollations)
2299 {
2300 Oid collid = lfirst_oid(ct);
2301
2302 if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2303 add_object_address(CollationRelationId, collid, 0,
2304 context->addrs);
2305 }
2306 }
2307 else if (IsA(node, TableFunc))
2308 {
2309 TableFunc *tf = (TableFunc *) node;
2310 ListCell *ct;
2311
2312 /*
2313 * Add refs for the datatypes and collations used in the TableFunc.
2314 */
2315 foreach(ct, tf->coltypes)
2316 {
2317 add_object_address(TypeRelationId, lfirst_oid(ct), 0,
2318 context->addrs);
2319 }
2320 foreach(ct, tf->colcollations)
2321 {
2322 Oid collid = lfirst_oid(ct);
2323
2324 if (OidIsValid(collid) && collid != DEFAULT_COLLATION_OID)
2325 add_object_address(CollationRelationId, collid, 0,
2326 context->addrs);
2327 }
2328 }
2329 else if (IsA(node, TableSampleClause))
2330 {
2331 TableSampleClause *tsc = (TableSampleClause *) node;
2332
2333 add_object_address(ProcedureRelationId, tsc->tsmhandler, 0,
2334 context->addrs);
2335 /* fall through to examine arguments */
2336 }
2337
2338 return expression_tree_walker(node, find_expr_references_walker,
2339 context);
2340}
2341
2342/*
2343 * find_expr_references_walker subroutine: handle a Var reference
2344 * to an RTE_FUNCTION RTE
2345 */
2346static void
2347 process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum,
2348 find_expr_references_context *context)
2349{
2350 int atts_done = 0;
2351 ListCell *lc;
2352
2353 /*
2354 * Identify which RangeTblFunction produces this attnum, and see if it
2355 * returns a composite type. If so, we'd better make a dependency on the
2356 * referenced column of the composite type (or actually, of its associated
2357 * relation).
2358 */
2359 foreach(lc, rte->functions)
2360 {
2361 RangeTblFunction *rtfunc = (RangeTblFunction *) lfirst(lc);
2362
2363 if (attnum > atts_done &&
2364 attnum <= atts_done + rtfunc->funccolcount)
2365 {
2366 TupleDesc tupdesc;
2367
2368 /* If it has a coldeflist, it certainly returns RECORD */
2369 if (rtfunc->funccolnames != NIL)
2370 tupdesc = NULL; /* no need to work hard */
2371 else
2372 tupdesc = get_expr_result_tupdesc(rtfunc->funcexpr, true);
2373 if (tupdesc && tupdesc->tdtypeid != RECORDOID)
2374 {
2375 /*
2376 * Named composite type, so individual columns could get
2377 * dropped. Make a dependency on this specific column.
2378 */
2379 Oid reltype = get_typ_typrelid(tupdesc->tdtypeid);
2380
2381 Assert(attnum - atts_done <= tupdesc->natts);
2382 if (OidIsValid(reltype)) /* can this fail? */
2383 add_object_address(RelationRelationId, reltype,
2384 attnum - atts_done,
2385 context->addrs);
2386 return;
2387 }
2388 /* Nothing to do; function's result type is handled elsewhere */
2389 return;
2390 }
2391 atts_done += rtfunc->funccolcount;
2392 }
2393
2394 /* If we get here, must be looking for the ordinality column */
2395 if (rte->funcordinality && attnum == atts_done + 1)
2396 return;
2397
2398 /* this probably can't happen ... */
2399 ereport(ERROR,
2400 (errcode(ERRCODE_UNDEFINED_COLUMN),
2401 errmsg("column %d of relation \"%s\" does not exist",
2402 attnum, rte->eref->aliasname)));
2403}
2404
2405/*
2406 * Given an array of dependency references, eliminate any duplicates.
2407 */
2408static void
2409 eliminate_duplicate_dependencies(ObjectAddresses *addrs)
2410{
2411 ObjectAddress *priorobj;
2412 int oldref,
2413 newrefs;
2414
2415 /*
2416 * We can't sort if the array has "extra" data, because there's no way to
2417 * keep it in sync. Fortunately that combination of features is not
2418 * needed.
2419 */
2420 Assert(!addrs->extras);
2421
2422 if (addrs->numrefs <= 1)
2423 return; /* nothing to do */
2424
2425 /* Sort the refs so that duplicates are adjacent */
2426 qsort(addrs->refs, addrs->numrefs, sizeof(ObjectAddress),
2427 object_address_comparator);
2428
2429 /* Remove dups */
2430 priorobj = addrs->refs;
2431 newrefs = 1;
2432 for (oldref = 1; oldref < addrs->numrefs; oldref++)
2433 {
2434 ObjectAddress *thisobj = addrs->refs + oldref;
2435
2436 if (priorobj->classId == thisobj->classId &&
2437 priorobj->objectId == thisobj->objectId)
2438 {
2439 if (priorobj->objectSubId == thisobj->objectSubId)
2440 continue; /* identical, so drop thisobj */
2441
2442 /*
2443 * If we have a whole-object reference and a reference to a part
2444 * of the same object, we don't need the whole-object reference
2445 * (for example, we don't need to reference both table foo and
2446 * column foo.bar). The whole-object reference will always appear
2447 * first in the sorted list.
2448 */
2449 if (priorobj->objectSubId == 0)
2450 {
2451 /* replace whole ref with partial */
2452 priorobj->objectSubId = thisobj->objectSubId;
2453 continue;
2454 }
2455 }
2456 /* Not identical, so add thisobj to output set */
2457 priorobj++;
2458 *priorobj = *thisobj;
2459 newrefs++;
2460 }
2461
2462 addrs->numrefs = newrefs;
2463}
2464
2465/*
2466 * qsort comparator for ObjectAddress items
2467 */
2468static int
2469 object_address_comparator(const void *a, const void *b)
2470{
2471 const ObjectAddress *obja = (const ObjectAddress *) a;
2472 const ObjectAddress *objb = (const ObjectAddress *) b;
2473
2474 /*
2475 * Primary sort key is OID descending. Most of the time, this will result
2476 * in putting newer objects before older ones, which is likely to be the
2477 * right order to delete in.
2478 */
2479 if (obja->objectId > objb->objectId)
2480 return -1;
2481 if (obja->objectId < objb->objectId)
2482 return 1;
2483
2484 /*
2485 * Next sort on catalog ID, in case identical OIDs appear in different
2486 * catalogs. Sort direction is pretty arbitrary here.
2487 */
2488 if (obja->classId < objb->classId)
2489 return -1;
2490 if (obja->classId > objb->classId)
2491 return 1;
2492
2493 /*
2494 * Last, sort on object subId.
2495 *
2496 * We sort the subId as an unsigned int so that 0 (the whole object) will
2497 * come first. This is essential for eliminate_duplicate_dependencies,
2498 * and is also the best order for findDependentObjects.
2499 */
2500 if ((unsigned int) obja->objectSubId < (unsigned int) objb->objectSubId)
2501 return -1;
2502 if ((unsigned int) obja->objectSubId > (unsigned int) objb->objectSubId)
2503 return 1;
2504 return 0;
2505}
2506
2507/*
2508 * Routines for handling an expansible array of ObjectAddress items.
2509 *
2510 * new_object_addresses: create a new ObjectAddresses array.
2511 */
2512ObjectAddresses *
2513 new_object_addresses(void)
2514{
2515 ObjectAddresses *addrs;
2516
2517 addrs = palloc(sizeof(ObjectAddresses));
2518
2519 addrs->numrefs = 0;
2520 addrs->maxrefs = 32;
2521 addrs->refs = (ObjectAddress *)
2522 palloc(addrs->maxrefs * sizeof(ObjectAddress));
2523 addrs->extras = NULL; /* until/unless needed */
2524
2525 return addrs;
2526}
2527
2528/*
2529 * Add an entry to an ObjectAddresses array.
2530 */
2531static void
2532 add_object_address(Oid classId, Oid objectId, int32 subId,
2533 ObjectAddresses *addrs)
2534{
2535 ObjectAddress *item;
2536
2537 /* enlarge array if needed */
2538 if (addrs->numrefs >= addrs->maxrefs)
2539 {
2540 addrs->maxrefs *= 2;
2541 addrs->refs = (ObjectAddress *)
2542 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2543 Assert(!addrs->extras);
2544 }
2545 /* record this item */
2546 item = addrs->refs + addrs->numrefs;
2547 item->classId = classId;
2548 item->objectId = objectId;
2549 item->objectSubId = subId;
2550 addrs->numrefs++;
2551}
2552
2553/*
2554 * Add an entry to an ObjectAddresses array.
2555 *
2556 * As above, but specify entry exactly.
2557 */
2558void
2559 add_exact_object_address(const ObjectAddress *object,
2560 ObjectAddresses *addrs)
2561{
2562 ObjectAddress *item;
2563
2564 /* enlarge array if needed */
2565 if (addrs->numrefs >= addrs->maxrefs)
2566 {
2567 addrs->maxrefs *= 2;
2568 addrs->refs = (ObjectAddress *)
2569 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2570 Assert(!addrs->extras);
2571 }
2572 /* record this item */
2573 item = addrs->refs + addrs->numrefs;
2574 *item = *object;
2575 addrs->numrefs++;
2576}
2577
2578/*
2579 * Add an entry to an ObjectAddresses array.
2580 *
2581 * As above, but specify entry exactly and provide some "extra" data too.
2582 */
2583static void
2584 add_exact_object_address_extra(const ObjectAddress *object,
2585 const ObjectAddressExtra *extra,
2586 ObjectAddresses *addrs)
2587{
2588 ObjectAddress *item;
2589 ObjectAddressExtra *itemextra;
2590
2591 /* allocate extra space if first time */
2592 if (!addrs->extras)
2593 addrs->extras = (ObjectAddressExtra *)
2594 palloc(addrs->maxrefs * sizeof(ObjectAddressExtra));
2595
2596 /* enlarge array if needed */
2597 if (addrs->numrefs >= addrs->maxrefs)
2598 {
2599 addrs->maxrefs *= 2;
2600 addrs->refs = (ObjectAddress *)
2601 repalloc(addrs->refs, addrs->maxrefs * sizeof(ObjectAddress));
2602 addrs->extras = (ObjectAddressExtra *)
2603 repalloc(addrs->extras, addrs->maxrefs * sizeof(ObjectAddressExtra));
2604 }
2605 /* record this item */
2606 item = addrs->refs + addrs->numrefs;
2607 *item = *object;
2608 itemextra = addrs->extras + addrs->numrefs;
2609 *itemextra = *extra;
2610 addrs->numrefs++;
2611}
2612
2613/*
2614 * Test whether an object is present in an ObjectAddresses array.
2615 *
2616 * We return "true" if object is a subobject of something in the array, too.
2617 */
2618bool
2619 object_address_present(const ObjectAddress *object,
2620 const ObjectAddresses *addrs)
2621{
2622 int i;
2623
2624 for (i = addrs->numrefs - 1; i >= 0; i--)
2625 {
2626 const ObjectAddress *thisobj = addrs->refs + i;
2627
2628 if (object->classId == thisobj->classId &&
2629 object->objectId == thisobj->objectId)
2630 {
2631 if (object->objectSubId == thisobj->objectSubId ||
2632 thisobj->objectSubId == 0)
2633 return true;
2634 }
2635 }
2636
2637 return false;
2638}
2639
2640/*
2641 * As above, except that if the object is present then also OR the given
2642 * flags into its associated extra data (which must exist).
2643 */
2644static bool
2645 object_address_present_add_flags(const ObjectAddress *object,
2646 int flags,
2647 ObjectAddresses *addrs)
2648{
2649 bool result = false;
2650 int i;
2651
2652 for (i = addrs->numrefs - 1; i >= 0; i--)
2653 {
2654 ObjectAddress *thisobj = addrs->refs + i;
2655
2656 if (object->classId == thisobj->classId &&
2657 object->objectId == thisobj->objectId)
2658 {
2659 if (object->objectSubId == thisobj->objectSubId)
2660 {
2661 ObjectAddressExtra *thisextra = addrs->extras + i;
2662
2663 thisextra->flags |= flags;
2664 result = true;
2665 }
2666 else if (thisobj->objectSubId == 0)
2667 {
2668 /*
2669 * We get here if we find a need to delete a column after
2670 * having already decided to drop its whole table. Obviously
2671 * we no longer need to drop the subobject, so report that we
2672 * found the subobject in the array. But don't plaster its
2673 * flags on the whole object.
2674 */
2675 result = true;
2676 }
2677 else if (object->objectSubId == 0)
2678 {
2679 /*
2680 * We get here if we find a need to delete a whole table after
2681 * having already decided to drop one of its columns. We
2682 * can't report that the whole object is in the array, but we
2683 * should mark the subobject with the whole object's flags.
2684 *
2685 * It might seem attractive to physically delete the column's
2686 * array entry, or at least mark it as no longer needing
2687 * separate deletion. But that could lead to, e.g., dropping
2688 * the column's datatype before we drop the table, which does
2689 * not seem like a good idea. This is a very rare situation
2690 * in practice, so we just take the hit of doing a separate
2691 * DROP COLUMN action even though we know we're gonna delete
2692 * the table later.
2693 *
2694 * What we can do, though, is mark this as a subobject so that
2695 * we don't report it separately, which is confusing because
2696 * it's unpredictable whether it happens or not. But do so
2697 * only if flags != 0 (flags == 0 is a read-only probe).
2698 *
2699 * Because there could be other subobjects of this object in
2700 * the array, this case means we always have to loop through
2701 * the whole array; we cannot exit early on a match.
2702 */
2703 ObjectAddressExtra *thisextra = addrs->extras + i;
2704
2705 if (flags)
2706 thisextra->flags |= (flags | DEPFLAG_SUBOBJECT);
2707 }
2708 }
2709 }
2710
2711 return result;
2712}
2713
2714/*
2715 * Similar to above, except we search an ObjectAddressStack.
2716 */
2717static bool
2718 stack_address_present_add_flags(const ObjectAddress *object,
2719 int flags,
2720 ObjectAddressStack *stack)
2721{
2722 bool result = false;
2723 ObjectAddressStack *stackptr;
2724
2725 for (stackptr = stack; stackptr; stackptr = stackptr->next)
2726 {
2727 const ObjectAddress *thisobj = stackptr->object;
2728
2729 if (object->classId == thisobj->classId &&
2730 object->objectId == thisobj->objectId)
2731 {
2732 if (object->objectSubId == thisobj->objectSubId)
2733 {
2734 stackptr->flags |= flags;
2735 result = true;
2736 }
2737 else if (thisobj->objectSubId == 0)
2738 {
2739 /*
2740 * We're visiting a column with whole table already on stack.
2741 * As in object_address_present_add_flags(), we can skip
2742 * further processing of the subobject, but we don't want to
2743 * propagate flags for the subobject to the whole object.
2744 */
2745 result = true;
2746 }
2747 else if (object->objectSubId == 0)
2748 {
2749 /*
2750 * We're visiting a table with column already on stack. As in
2751 * object_address_present_add_flags(), we should propagate
2752 * flags for the whole object to each of its subobjects.
2753 */
2754 if (flags)
2755 stackptr->flags |= (flags | DEPFLAG_SUBOBJECT);
2756 }
2757 }
2758 }
2759
2760 return result;
2761}
2762
2763/*
2764 * Record multiple dependencies from an ObjectAddresses array, after first
2765 * removing any duplicates.
2766 */
2767void
2768 record_object_address_dependencies(const ObjectAddress *depender,
2769 ObjectAddresses *referenced,
2770 DependencyType behavior)
2771{
2772 eliminate_duplicate_dependencies(referenced);
2773 recordMultipleDependencies(depender,
2774 referenced->refs, referenced->numrefs,
2775 behavior);
2776}
2777
2778/*
2779 * Sort the items in an ObjectAddresses array.
2780 *
2781 * The major sort key is OID-descending, so that newer objects will be listed
2782 * first in most cases. This is primarily useful for ensuring stable outputs
2783 * from regression tests; it's not recommended if the order of the objects is
2784 * determined by user input, such as the order of targets in a DROP command.
2785 */
2786void
2787 sort_object_addresses(ObjectAddresses *addrs)
2788{
2789 if (addrs->numrefs > 1)
2790 qsort(addrs->refs, addrs->numrefs,
2791 sizeof(ObjectAddress),
2792 object_address_comparator);
2793}
2794
2795/*
2796 * Clean up when done with an ObjectAddresses array.
2797 */
2798void
2799 free_object_addresses(ObjectAddresses *addrs)
2800{
2801 pfree(addrs->refs);
2802 if (addrs->extras)
2803 pfree(addrs->extras);
2804 pfree(addrs);
2805}
2806
2807/*
2808 * delete initial ACL for extension objects
2809 */
2810static void
2811 DeleteInitPrivs(const ObjectAddress *object)
2812{
2813 Relation relation;
2814 ScanKeyData key[3];
2815 int nkeys;
2816 SysScanDesc scan;
2817 HeapTuple oldtuple;
2818
2819 relation = table_open(InitPrivsRelationId, RowExclusiveLock);
2820
2821 ScanKeyInit(&key[0],
2822 Anum_pg_init_privs_objoid,
2823 BTEqualStrategyNumber, F_OIDEQ,
2824 ObjectIdGetDatum(object->objectId));
2825 ScanKeyInit(&key[1],
2826 Anum_pg_init_privs_classoid,
2827 BTEqualStrategyNumber, F_OIDEQ,
2828 ObjectIdGetDatum(object->classId));
2829 if (object->objectSubId != 0)
2830 {
2831 ScanKeyInit(&key[2],
2832 Anum_pg_init_privs_objsubid,
2833 BTEqualStrategyNumber, F_INT4EQ,
2834 Int32GetDatum(object->objectSubId));
2835 nkeys = 3;
2836 }
2837 else
2838 nkeys = 2;
2839
2840 scan = systable_beginscan(relation, InitPrivsObjIndexId, true,
2841 NULL, nkeys, key);
2842
2843 while (HeapTupleIsValid(oldtuple = systable_getnext(scan)))
2844 CatalogTupleDelete(relation, &oldtuple->t_self);
2845
2846 systable_endscan(scan);
2847
2848 table_close(relation, RowExclusiveLock);
2849}
int16 AttrNumber
Definition: attnum.h:21
#define InvalidAttrNumber
Definition: attnum.h:23
#define ngettext(s, p, n)
Definition: c.h:1180
int32_t int32
Definition: c.h:534
#define OidIsValid(objectId)
Definition: c.h:774
bool IsPinnedObject(Oid classId, Oid objectId)
Definition: catalog.c:370
Oid collid
Definition: collationcmds.c:700
void DeleteSequenceTuple(Oid relid)
Definition: sequence.c:583
void DeleteComments(Oid oid, Oid classoid, int32 subid)
Definition: comment.c:326
static bool object_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddresses *addrs)
Definition: dependency.c:2645
#define DEPFLAG_PARTITION
Definition: dependency.c:105
void performMultipleDeletions(const ObjectAddresses *objects, DropBehavior behavior, int flags)
Definition: dependency.c:332
struct ObjectAddressStack ObjectAddressStack
static void add_exact_object_address_extra(const ObjectAddress *object, const ObjectAddressExtra *extra, ObjectAddresses *addrs)
Definition: dependency.c:2584
void record_object_address_dependencies(const ObjectAddress *depender, ObjectAddresses *referenced, DependencyType behavior)
Definition: dependency.c:2768
static void DropObjectById(const ObjectAddress *object)
Definition: dependency.c:1189
static int object_address_comparator(const void *a, const void *b)
Definition: dependency.c:2469
void sort_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2787
static void doDeletion(const ObjectAddress *object, int flags)
Definition: dependency.c:1352
static bool stack_address_present_add_flags(const ObjectAddress *object, int flags, ObjectAddressStack *stack)
Definition: dependency.c:2718
#define DEPFLAG_IS_PART
Definition: dependency.c:108
static void add_object_address(Oid classId, Oid objectId, int32 subId, ObjectAddresses *addrs)
Definition: dependency.c:2532
static bool find_expr_references_walker(Node *node, find_expr_references_context *context)
Definition: dependency.c:1698
static void eliminate_duplicate_dependencies(ObjectAddresses *addrs)
Definition: dependency.c:2409
void AcquireDeletionLock(const ObjectAddress *object, int flags)
Definition: dependency.c:1496
void performDeletion(const ObjectAddress *object, DropBehavior behavior, int flags)
Definition: dependency.c:273
static void deleteOneObject(const ObjectAddress *object, Relation *depRel, int32 flags)
static void DeleteInitPrivs(const ObjectAddress *object)
Definition: dependency.c:2811
#define MAX_REPORTED_DEPS
#define DEPFLAG_ORIGINAL
Definition: dependency.c:101
static void process_function_rte_ref(RangeTblEntry *rte, AttrNumber attnum, find_expr_references_context *context)
Definition: dependency.c:2347
static void reportDependentObjects(const ObjectAddresses *targetObjects, DropBehavior behavior, int flags, const ObjectAddress *origObject)
Definition: dependency.c:980
void ReleaseDeletionLock(const ObjectAddress *object)
Definition: dependency.c:1528
#define DEPFLAG_AUTO
Definition: dependency.c:103
void recordDependencyOnSingleRelExpr(const ObjectAddress *depender, Node *expr, Oid relId, DependencyType behavior, DependencyType self_behavior, bool reverse_self)
Definition: dependency.c:1596
void recordDependencyOnExpr(const ObjectAddress *depender, Node *expr, List *rtable, DependencyType behavior)
Definition: dependency.c:1553
static void findDependentObjects(const ObjectAddress *object, int objflags, int flags, ObjectAddressStack *stack, ObjectAddresses *targetObjects, const ObjectAddresses *pendingObjects, Relation *depRel)
Definition: dependency.c:432
#define DEPFLAG_REVERSE
Definition: dependency.c:107
bool object_address_present(const ObjectAddress *object, const ObjectAddresses *addrs)
Definition: dependency.c:2619
void add_exact_object_address(const ObjectAddress *object, ObjectAddresses *addrs)
Definition: dependency.c:2559
#define DEPFLAG_NORMAL
Definition: dependency.c:102
ObjectAddresses * new_object_addresses(void)
Definition: dependency.c:2513
#define DEPFLAG_SUBOBJECT
Definition: dependency.c:109
#define DEPFLAG_EXTENSION
Definition: dependency.c:106
#define DEPFLAG_INTERNAL
Definition: dependency.c:104
static void deleteObjectsInList(ObjectAddresses *targetObjects, Relation *depRel, int flags)
Definition: dependency.c:185
void free_object_addresses(ObjectAddresses *addrs)
Definition: dependency.c:2799
#define PERFORM_DELETION_CONCURRENTLY
Definition: dependency.h:93
#define PERFORM_DELETION_SKIP_EXTENSIONS
Definition: dependency.h:96
DependencyType
Definition: dependency.h:32
@ DEPENDENCY_AUTO
Definition: dependency.h:34
@ DEPENDENCY_AUTO_EXTENSION
Definition: dependency.h:39
@ DEPENDENCY_INTERNAL
Definition: dependency.h:35
@ DEPENDENCY_PARTITION_PRI
Definition: dependency.h:36
@ DEPENDENCY_PARTITION_SEC
Definition: dependency.h:37
@ DEPENDENCY_EXTENSION
Definition: dependency.h:38
@ DEPENDENCY_NORMAL
Definition: dependency.h:33
#define PERFORM_DELETION_CONCURRENT_LOCK
Definition: dependency.h:97
#define PERFORM_DELETION_QUIETLY
Definition: dependency.h:94
#define PERFORM_DELETION_SKIP_ORIGINAL
Definition: dependency.h:95
#define PERFORM_DELETION_INTERNAL
Definition: dependency.h:92
int errmsg_plural(const char *fmt_singular, const char *fmt_plural, unsigned long n,...)
Definition: elog.c:1184
int errmsg_internal(const char *fmt,...)
Definition: elog.c:1161
int errdetail_internal(const char *fmt,...)
Definition: elog.c:1234
int errhint(const char *fmt,...)
Definition: elog.c:1321
bool message_level_is_interesting(int elevel)
Definition: elog.c:273
int errcode(int sqlerrcode)
Definition: elog.c:854
int errmsg(const char *fmt,...)
Definition: elog.c:1071
int errdetail_log(const char *fmt,...)
Definition: elog.c:1255
_
#define _(x)
Definition: elog.c:91
#define DEBUG2
Definition: elog.h:29
#define ERROR
Definition: elog.h:39
#define elog(elevel,...)
Definition: elog.h:226
#define NOTICE
Definition: elog.h:35
#define ereport(elevel,...)
Definition: elog.h:150
void EventTriggerSQLDropAddObject(const ObjectAddress *object, bool original, bool normal)
bool trackDroppedObjectsNeeded(void)
bool EventTriggerSupportsObject(const ObjectAddress *object)
bool creating_extension
Definition: extension.c:77
Oid CurrentExtensionObject
Definition: extension.c:78
void RemoveExtensionById(Oid extId)
Definition: extension.c:2151
TupleDesc get_expr_result_tupdesc(Node *expr, bool noError)
Definition: funcapi.c:551
void RemoveFunctionById(Oid funcOid)
Definition: functioncmds.c:1311
void systable_endscan(SysScanDesc sysscan)
Definition: genam.c:603
bool systable_recheck_tuple(SysScanDesc sysscan, HeapTuple tup)
Definition: genam.c:573
HeapTuple systable_getnext(SysScanDesc sysscan)
Definition: genam.c:514
SysScanDesc systable_beginscan(Relation heapRelation, Oid indexId, bool indexOK, Snapshot snapshot, int nkeys, ScanKey key)
Definition: genam.c:388
Assert(PointerIsAligned(start, uint64))
void RemoveAttributeById(Oid relid, AttrNumber attnum)
Definition: heap.c:1683
void heap_drop_with_catalog(Oid relid)
Definition: heap.c:1784
#define HeapTupleIsValid(tuple)
Definition: htup.h:78
static void * GETSTRUCT(const HeapTupleData *tuple)
Definition: htup_details.h:728
void index_drop(Oid indexId, bool concurrent, bool concurrent_lock_mode)
Definition: index.c:2122
void CatalogTupleDelete(Relation heapRel, ItemPointer tid)
Definition: indexing.c:365
b
int b
Definition: isn.c:74
a
int a
Definition: isn.c:73
i
int i
Definition: isn.c:77
List * list_delete_first(List *list)
Definition: list.c:943
List * lcons(void *datum, List *list)
Definition: list.c:495
void LockSharedObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1088
void UnlockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:229
void LockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1008
void LockRelationOid(Oid relid, LOCKMODE lockmode)
Definition: lmgr.c:107
void UnlockDatabaseObject(Oid classid, Oid objid, uint16 objsubid, LOCKMODE lockmode)
Definition: lmgr.c:1068
#define AccessExclusiveLock
Definition: lockdefs.h:43
#define AccessShareLock
Definition: lockdefs.h:36
#define ShareUpdateExclusiveLock
Definition: lockdefs.h:39
#define RowExclusiveLock
Definition: lockdefs.h:38
char get_rel_relkind(Oid relid)
Definition: lsyscache.c:2170
Oid get_typ_typrelid(Oid typid)
Definition: lsyscache.c:2898
Oid getBaseType(Oid typid)
Definition: lsyscache.c:2688
void * repalloc(void *pointer, Size size)
Definition: mcxt.c:1610
void pfree(void *pointer)
Definition: mcxt.c:1594
void * palloc(Size size)
Definition: mcxt.c:1365
Oid exprType(const Node *expr)
Definition: nodeFuncs.c:42
#define query_tree_walker(q, w, c, f)
Definition: nodeFuncs.h:158
#define QTW_EXAMINE_SORTGROUP
Definition: nodeFuncs.h:30
#define expression_tree_walker(n, w, c)
Definition: nodeFuncs.h:153
#define QTW_IGNORE_JOINALIASES
Definition: nodeFuncs.h:25
#define IsA(nodeptr, _type_)
Definition: nodes.h:164
@ CMD_INSERT
Definition: nodes.h:277
@ CMD_UPDATE
Definition: nodes.h:276
#define InvokeObjectDropHookArg(classId, objectId, subId, dropflags)
Definition: objectaccess.h:184
AttrNumber get_object_attnum_oid(Oid class_id)
const char * get_object_class_descr(Oid class_id)
char * getObjectDescription(const ObjectAddress *object, bool missing_ok)
int get_object_catcache_oid(Oid class_id)
Oid get_object_oid_index(Oid class_id)
void RemoveOperatorById(Oid operOid)
Definition: operatorcmds.c:413
@ RTE_JOIN
Definition: parsenodes.h:1045
@ RTE_NAMEDTUPLESTORE
Definition: parsenodes.h:1050
@ RTE_FUNCTION
Definition: parsenodes.h:1046
@ RTE_RELATION
Definition: parsenodes.h:1043
DropBehavior
Definition: parsenodes.h:2397
@ DROP_CASCADE
Definition: parsenodes.h:2399
@ DROP_RESTRICT
Definition: parsenodes.h:2398
#define rt_fetch(rangetable_index, rangetable)
Definition: parsetree.h:31
void RemoveAttrDefaultById(Oid attrdefId)
Definition: pg_attrdef.c:207
int16 attnum
Definition: pg_attribute.h:74
void RemoveConstraintById(Oid conId)
Definition: pg_constraint.c:895
void recordMultipleDependencies(const ObjectAddress *depender, const ObjectAddress *referenced, int nreferenced, DependencyType behavior)
Definition: pg_depend.c:57
void recordDependencyOn(const ObjectAddress *depender, const ObjectAddress *referenced, DependencyType behavior)
Definition: pg_depend.c:45
FormData_pg_depend * Form_pg_depend
Definition: pg_depend.h:72
void LargeObjectDrop(Oid loid)
Definition: pg_largeobject.c:95
#define lfirst(lc)
Definition: pg_list.h:172
static int list_length(const List *l)
Definition: pg_list.h:152
#define NIL
Definition: pg_list.h:68
#define lfirst_int(lc)
Definition: pg_list.h:173
#define list_make1(x1)
Definition: pg_list.h:212
static void * list_nth(const List *list, int n)
Definition: pg_list.h:299
#define lfirst_oid(lc)
Definition: pg_list.h:174
void deleteSharedDependencyRecordsFor(Oid classId, Oid objectId, int32 objectSubId)
Definition: pg_shdepend.c:1047
void RemovePolicyById(Oid policy_id)
Definition: policy.c:332
#define qsort(a, b, c, d)
Definition: port.h:479
static Oid DatumGetObjectId(Datum X)
Definition: postgres.h:252
static Datum ObjectIdGetDatum(Oid X)
Definition: postgres.h:262
static Datum Int32GetDatum(int32 X)
Definition: postgres.h:222
unsigned int Oid
Definition: postgres_ext.h:32
void RemovePublicationSchemaById(Oid psoid)
void RemovePublicationById(Oid pubid)
void RemovePublicationRelById(Oid proid)
void RemoveRewriteRuleById(Oid ruleOid)
Definition: rewriteRemove.c:33
void ScanKeyInit(ScanKey entry, AttrNumber attributeNumber, StrategyNumber strategy, RegProcedure procedure, Datum argument)
Definition: scankey.c:76
void DeleteSecurityLabel(const ObjectAddress *object)
Definition: seclabel.c:523
void check_stack_depth(void)
Definition: stack_depth.c:95
void RemoveStatisticsById(Oid statsOid)
Definition: statscmds.c:765
#define BTEqualStrategyNumber
Definition: stratnum.h:31
void appendStringInfo(StringInfo str, const char *fmt,...)
Definition: stringinfo.c:145
void appendStringInfoChar(StringInfo str, char ch)
Definition: stringinfo.c:242
void initStringInfo(StringInfo str)
Definition: stringinfo.c:97
Definition: primnodes.h:459
Oid aggfnoid
Definition: primnodes.h:463
Oid cycle_mark_neop
Definition: parsenodes.h:1696
Oid cycle_mark_collation
Definition: parsenodes.h:1695
Oid cycle_mark_type
Definition: parsenodes.h:1693
Oid resulttype
Definition: primnodes.h:2053
Oid resulttype
Definition: primnodes.h:1240
Oid collOid
Definition: primnodes.h:1312
Definition: primnodes.h:324
Oid consttype
Definition: primnodes.h:329
AttrNumber fieldnum
Definition: primnodes.h:1161
Expr * arg
Definition: primnodes.h:1160
Oid funcid
Definition: primnodes.h:782
ItemPointerData t_self
Definition: htup.h:65
Definition: pg_list.h:54
Definition: nodes.h:135
ObjectAddress obj
Definition: dependency.c:134
ObjectAddress dependee
Definition: dependency.c:97
const ObjectAddress * object
Definition: dependency.c:126
struct ObjectAddressStack * next
Definition: dependency.c:128
int32 objectSubId
Definition: objectaddress.h:28
ObjectAddressExtra * extras
Definition: dependency.c:116
ObjectAddress * refs
Definition: dependency.c:115
Oid constraint
Definition: primnodes.h:2378
Definition: primnodes.h:846
Oid opno
Definition: primnodes.h:850
Definition: primnodes.h:391
Oid paramtype
Definition: primnodes.h:397
Oid paramcollid
Definition: primnodes.h:401
Definition: parsenodes.h:118
List * rtable
Definition: parsenodes.h:175
CmdType commandType
Definition: parsenodes.h:121
List * targetList
Definition: parsenodes.h:198
bool funcordinality
Definition: parsenodes.h:1210
List * functions
Definition: parsenodes.h:1208
RTEKind rtekind
Definition: parsenodes.h:1078
Node * funcexpr
Definition: parsenodes.h:1351
Oid resulttype
Definition: primnodes.h:1217
Definition: rel.h:56
Definition: skey.h:65
char * data
Definition: stringinfo.h:48
AttrNumber resno
Definition: primnodes.h:2240
Oid tdtypeid
Definition: tupdesc.h:138
Definition: primnodes.h:262
AttrNumber varattno
Definition: primnodes.h:274
int varno
Definition: primnodes.h:269
Index varlevelsup
Definition: primnodes.h:294
Oid winfnoid
Definition: primnodes.h:597
ObjectAddresses * addrs
Definition: dependency.c:141
void ReleaseSysCache(HeapTuple tuple)
Definition: syscache.c:264
HeapTuple SearchSysCache1(int cacheId, Datum key1)
Definition: syscache.c:220
#define SearchSysCacheExists1(cacheId, key1)
Definition: syscache.h:100
void table_close(Relation relation, LOCKMODE lockmode)
Definition: table.c:126
Relation table_open(Oid relationId, LOCKMODE lockmode)
Definition: table.c:40
void RemoveTriggerById(Oid trigOid)
Definition: trigger.c:1291
void RemoveTSConfigurationById(Oid cfgId)
Definition: tsearchcmds.c:1108
void RemoveTypeById(Oid typeOid)
Definition: typecmds.c:657
Definition: pg_list.h:46
void CommandCounterIncrement(void)
Definition: xact.c:1100

AltStyle によって変換されたページ (->オリジナル) /