PostgreSQL Source Code git master
Data Structures | Macros | Typedefs | Functions
d2s.c File Reference
#include "postgres.h"
#include "common/shortest_dec.h"
#include "ryu_common.h"
#include "digit_table.h"
#include "d2s_full_table.h"
#include "d2s_intrinsics.h"
Include dependency graph for d2s.c:

Go to the source code of this file.

Data Structures

 

Macros

#define  DOUBLE_MANTISSA_BITS   52
 
#define  DOUBLE_EXPONENT_BITS   11
 
#define  DOUBLE_BIAS   1023
 
#define  DOUBLE_POW5_INV_BITCOUNT   122
 
#define  DOUBLE_POW5_BITCOUNT   121
 

Typedefs

 

Functions

 
static bool  multipleOfPowerOf5 (const uint64 value, const uint32 p)
 
static bool  multipleOfPowerOf2 (const uint64 value, const uint32 p)
 
static uint64  mulShiftAll (uint64 m, const uint64 *const mul, const int32 j, uint64 *const vp, uint64 *const vm, const uint32 mmShift)
 
static uint32  decimalLength (const uint64 v)
 
static floating_decimal_64  d2d (const uint64 ieeeMantissa, const uint32 ieeeExponent)
 
static int  to_chars_df (const floating_decimal_64 v, const uint32 olength, char *const result)
 
static int  to_chars (floating_decimal_64 v, const bool sign, char *const result)
 
static bool  d2d_small_int (const uint64 ieeeMantissa, const uint32 ieeeExponent, floating_decimal_64 *v)
 
int  double_to_shortest_decimal_bufn (double f, char *result)
 
int  double_to_shortest_decimal_buf (double f, char *result)
 
char *  double_to_shortest_decimal (double f)
 

Macro Definition Documentation

DOUBLE_BIAS

#define DOUBLE_BIAS   1023

Definition at line 67 of file d2s.c.

DOUBLE_EXPONENT_BITS

#define DOUBLE_EXPONENT_BITS   11

Definition at line 66 of file d2s.c.

DOUBLE_MANTISSA_BITS

#define DOUBLE_MANTISSA_BITS   52

Definition at line 65 of file d2s.c.

DOUBLE_POW5_BITCOUNT

#define DOUBLE_POW5_BITCOUNT   121

Definition at line 70 of file d2s.c.

DOUBLE_POW5_INV_BITCOUNT

#define DOUBLE_POW5_INV_BITCOUNT   122

Definition at line 69 of file d2s.c.

Typedef Documentation

floating_decimal_64

Function Documentation

d2d()

static floating_decimal_64 d2d ( const uint64  ieeeMantissa,
const uint32  ieeeExponent 
)
inlinestatic

Definition at line 346 of file d2s.c.

347{
348 int32 e2;
349 uint64 m2;
350
351 if (ieeeExponent == 0)
352 {
353 /* We subtract 2 so that the bounds computation has 2 additional bits. */
354 e2 = 1 - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
355 m2 = ieeeMantissa;
356 }
357 else
358 {
359 e2 = ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS - 2;
360 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
361 }
362
363#if STRICTLY_SHORTEST
364 const bool even = (m2 & 1) == 0;
365 const bool acceptBounds = even;
366#else
367 const bool acceptBounds = false;
368#endif
369
370 /* Step 2: Determine the interval of legal decimal representations. */
371 const uint64 mv = 4 * m2;
372
373 /* Implicit bool -> int conversion. True is 1, false is 0. */
374 const uint32 mmShift = ieeeMantissa != 0 || ieeeExponent <= 1;
375
376 /* We would compute mp and mm like this: */
377 /* uint64 mp = 4 * m2 + 2; */
378 /* uint64 mm = mv - 1 - mmShift; */
379
380 /* Step 3: Convert to a decimal power base using 128-bit arithmetic. */
381 uint64 vr,
382 vp,
383 vm;
384 int32 e10;
385 bool vmIsTrailingZeros = false;
386 bool vrIsTrailingZeros = false;
387
388 if (e2 >= 0)
389 {
390 /*
391 * I tried special-casing q == 0, but there was no effect on
392 * performance.
393 *
394 * This expr is slightly faster than max(0, log10Pow2(e2) - 1).
395 */
396 const uint32 q = log10Pow2(e2) - (e2 > 3);
397 const int32 k = DOUBLE_POW5_INV_BITCOUNT + pow5bits(q) - 1;
398 const int32 i = -e2 + q + k;
399
400 e10 = q;
401
402 vr = mulShiftAll(m2, DOUBLE_POW5_INV_SPLIT[q], i, &vp, &vm, mmShift);
403
404 if (q <= 21)
405 {
406 /*
407 * This should use q <= 22, but I think 21 is also safe. Smaller
408 * values may still be safe, but it's more difficult to reason
409 * about them.
410 *
411 * Only one of mp, mv, and mm can be a multiple of 5, if any.
412 */
413 const uint32 mvMod5 = (uint32) (mv - 5 * div5(mv));
414
415 if (mvMod5 == 0)
416 {
417 vrIsTrailingZeros = multipleOfPowerOf5(mv, q);
418 }
419 else if (acceptBounds)
420 {
421 /*----
422 * Same as min(e2 + (~mm & 1), pow5Factor(mm)) >= q
423 * <=> e2 + (~mm & 1) >= q && pow5Factor(mm) >= q
424 * <=> true && pow5Factor(mm) >= q, since e2 >= q.
425 *----
426 */
427 vmIsTrailingZeros = multipleOfPowerOf5(mv - 1 - mmShift, q);
428 }
429 else
430 {
431 /* Same as min(e2 + 1, pow5Factor(mp)) >= q. */
432 vp -= multipleOfPowerOf5(mv + 2, q);
433 }
434 }
435 }
436 else
437 {
438 /*
439 * This expression is slightly faster than max(0, log10Pow5(-e2) - 1).
440 */
441 const uint32 q = log10Pow5(-e2) - (-e2 > 1);
442 const int32 i = -e2 - q;
444 const int32 j = q - k;
445
446 e10 = q + e2;
447
448 vr = mulShiftAll(m2, DOUBLE_POW5_SPLIT[i], j, &vp, &vm, mmShift);
449
450 if (q <= 1)
451 {
452 /*
453 * {vr,vp,vm} is trailing zeros if {mv,mp,mm} has at least q
454 * trailing 0 bits.
455 */
456 /* mv = 4 * m2, so it always has at least two trailing 0 bits. */
457 vrIsTrailingZeros = true;
458 if (acceptBounds)
459 {
460 /*
461 * mm = mv - 1 - mmShift, so it has 1 trailing 0 bit iff
462 * mmShift == 1.
463 */
464 vmIsTrailingZeros = mmShift == 1;
465 }
466 else
467 {
468 /*
469 * mp = mv + 2, so it always has at least one trailing 0 bit.
470 */
471 --vp;
472 }
473 }
474 else if (q < 63)
475 {
476 /* TODO(ulfjack):Use a tighter bound here. */
477 /*
478 * We need to compute min(ntz(mv), pow5Factor(mv) - e2) >= q - 1
479 */
480 /* <=> ntz(mv) >= q - 1 && pow5Factor(mv) - e2 >= q - 1 */
481 /* <=> ntz(mv) >= q - 1 (e2 is negative and -e2 >= q) */
482 /* <=> (mv & ((1 << (q - 1)) - 1)) == 0 */
483
484 /*
485 * We also need to make sure that the left shift does not
486 * overflow.
487 */
488 vrIsTrailingZeros = multipleOfPowerOf2(mv, q - 1);
489 }
490 }
491
492 /*
493 * Step 4: Find the shortest decimal representation in the interval of
494 * legal representations.
495 */
496 uint32 removed = 0;
497 uint8 lastRemovedDigit = 0;
499
500 /* On average, we remove ~2 digits. */
501 if (vmIsTrailingZeros || vrIsTrailingZeros)
502 {
503 /* General case, which happens rarely (~0.7%). */
504 for (;;)
505 {
506 const uint64 vpDiv10 = div10(vp);
507 const uint64 vmDiv10 = div10(vm);
508
509 if (vpDiv10 <= vmDiv10)
510 break;
511
512 const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
513 const uint64 vrDiv10 = div10(vr);
514 const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
515
516 vmIsTrailingZeros &= vmMod10 == 0;
517 vrIsTrailingZeros &= lastRemovedDigit == 0;
518 lastRemovedDigit = (uint8) vrMod10;
519 vr = vrDiv10;
520 vp = vpDiv10;
521 vm = vmDiv10;
522 ++removed;
523 }
524
525 if (vmIsTrailingZeros)
526 {
527 for (;;)
528 {
529 const uint64 vmDiv10 = div10(vm);
530 const uint32 vmMod10 = (uint32) (vm - 10 * vmDiv10);
531
532 if (vmMod10 != 0)
533 break;
534
535 const uint64 vpDiv10 = div10(vp);
536 const uint64 vrDiv10 = div10(vr);
537 const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
538
539 vrIsTrailingZeros &= lastRemovedDigit == 0;
540 lastRemovedDigit = (uint8) vrMod10;
541 vr = vrDiv10;
542 vp = vpDiv10;
543 vm = vmDiv10;
544 ++removed;
545 }
546 }
547
548 if (vrIsTrailingZeros && lastRemovedDigit == 5 && vr % 2 == 0)
549 {
550 /* Round even if the exact number is .....50..0. */
551 lastRemovedDigit = 4;
552 }
553
554 /*
555 * We need to take vr + 1 if vr is outside bounds or we need to round
556 * up.
557 */
558 output = vr + ((vr == vm && (!acceptBounds || !vmIsTrailingZeros)) || lastRemovedDigit >= 5);
559 }
560 else
561 {
562 /*
563 * Specialized for the common case (~99.3%). Percentages below are
564 * relative to this.
565 */
566 bool roundUp = false;
567 const uint64 vpDiv100 = div100(vp);
568 const uint64 vmDiv100 = div100(vm);
569
570 if (vpDiv100 > vmDiv100)
571 {
572 /* Optimization:remove two digits at a time(~86.2 %). */
573 const uint64 vrDiv100 = div100(vr);
574 const uint32 vrMod100 = (uint32) (vr - 100 * vrDiv100);
575
576 roundUp = vrMod100 >= 50;
577 vr = vrDiv100;
578 vp = vpDiv100;
579 vm = vmDiv100;
580 removed += 2;
581 }
582
583 /*----
584 * Loop iterations below (approximately), without optimization
585 * above:
586 *
587 * 0: 0.03%, 1: 13.8%, 2: 70.6%, 3: 14.0%, 4: 1.40%, 5: 0.14%,
588 * 6+: 0.02%
589 *
590 * Loop iterations below (approximately), with optimization
591 * above:
592 *
593 * 0: 70.6%, 1: 27.8%, 2: 1.40%, 3: 0.14%, 4+: 0.02%
594 *----
595 */
596 for (;;)
597 {
598 const uint64 vpDiv10 = div10(vp);
599 const uint64 vmDiv10 = div10(vm);
600
601 if (vpDiv10 <= vmDiv10)
602 break;
603
604 const uint64 vrDiv10 = div10(vr);
605 const uint32 vrMod10 = (uint32) (vr - 10 * vrDiv10);
606
607 roundUp = vrMod10 >= 5;
608 vr = vrDiv10;
609 vp = vpDiv10;
610 vm = vmDiv10;
611 ++removed;
612 }
613
614 /*
615 * We need to take vr + 1 if vr is outside bounds or we need to round
616 * up.
617 */
618 output = vr + (vr == vm || roundUp);
619 }
620
621 const int32 exp = e10 + removed;
622
624
625 fd.exponent = exp;
626 fd.mantissa = output;
627 return fd;
628}
uint8_t uint8
Definition: c.h:536
int32_t int32
Definition: c.h:534
uint64_t uint64
Definition: c.h:539
uint32_t uint32
Definition: c.h:538
#define UINT64CONST(x)
Definition: c.h:553
#define DOUBLE_POW5_BITCOUNT
Definition: d2s.c:70
#define DOUBLE_BIAS
Definition: d2s.c:67
#define DOUBLE_POW5_INV_BITCOUNT
Definition: d2s.c:69
static uint64 mulShiftAll(uint64 m, const uint64 *const mul, const int32 j, uint64 *const vp, uint64 *const vm, const uint32 mmShift)
Definition: d2s.c:220
static bool multipleOfPowerOf5(const uint64 value, const uint32 p)
Definition: d2s.c:95
#define DOUBLE_MANTISSA_BITS
Definition: d2s.c:65
static bool multipleOfPowerOf2(const uint64 value, const uint32 p)
Definition: d2s.c:106
static const uint64 DOUBLE_POW5_SPLIT[326][2]
static const uint64 DOUBLE_POW5_INV_SPLIT[292][2]
Definition: d2s_full_table.h:43
static uint64 div10(const uint64 x)
static uint64 div5(const uint64 x)
static uint64 div100(const uint64 x)
FILE * output
j
int j
Definition: isn.c:78
i
int i
Definition: isn.c:77
static int fd(const char *x, int i)
Definition: preproc-init.c:105
static uint32 pow5bits(const int32 e)
Definition: ryu_common.h:54
static int32 log10Pow5(const int32 e)
Definition: ryu_common.h:83
static int32 log10Pow2(const int32 e)
Definition: ryu_common.h:70

References div10(), div100(), div5(), DOUBLE_BIAS, DOUBLE_MANTISSA_BITS, DOUBLE_POW5_BITCOUNT, DOUBLE_POW5_INV_BITCOUNT, DOUBLE_POW5_INV_SPLIT, DOUBLE_POW5_SPLIT, fd(), i, j, log10Pow2(), log10Pow5(), mulShiftAll(), multipleOfPowerOf2(), multipleOfPowerOf5(), output, pow5bits(), and UINT64CONST.

Referenced by double_to_shortest_decimal_bufn().

d2d_small_int()

static bool d2d_small_int ( const uint64  ieeeMantissa,
const uint32  ieeeExponent,
)
inlinestatic

Definition at line 962 of file d2s.c.

965{
966 const int32 e2 = (int32) ieeeExponent - DOUBLE_BIAS - DOUBLE_MANTISSA_BITS;
967
968 /*
969 * Avoid using multiple "return false;" here since it tends to provoke the
970 * compiler into inlining multiple copies of d2d, which is undesirable.
971 */
972
973 if (e2 >= -DOUBLE_MANTISSA_BITS && e2 <= 0)
974 {
975 /*----
976 * Since 2^52 <= m2 < 2^53 and 0 <= -e2 <= 52:
977 * 1 <= f = m2 / 2^-e2 < 2^53.
978 *
979 * Test if the lower -e2 bits of the significand are 0, i.e. whether
980 * the fraction is 0. We can use ieeeMantissa here, since the implied
981 * 1 bit can never be tested by this; the implied 1 can only be part
982 * of a fraction if e2 < -DOUBLE_MANTISSA_BITS which we already
983 * checked. (e.g. 0.5 gives ieeeMantissa == 0 and e2 == -53)
984 */
985 const uint64 mask = (UINT64CONST(1) << -e2) - 1;
986 const uint64 fraction = ieeeMantissa & mask;
987
988 if (fraction == 0)
989 {
990 /*----
991 * f is an integer in the range [1, 2^53).
992 * Note: mantissa might contain trailing (decimal) 0's.
993 * Note: since 2^53 < 10^16, there is no need to adjust
994 * decimalLength().
995 */
996 const uint64 m2 = (UINT64CONST(1) << DOUBLE_MANTISSA_BITS) | ieeeMantissa;
997
998 v->mantissa = m2 >> -e2;
999 v->exponent = 0;
1000 return true;
1001 }
1002 }
1003
1004 return false;
1005}
int32 exponent
Definition: d2s.c:342
uint64 mantissa
Definition: d2s.c:341

References DOUBLE_BIAS, DOUBLE_MANTISSA_BITS, floating_decimal_64::exponent, floating_decimal_64::mantissa, and UINT64CONST.

Referenced by double_to_shortest_decimal_bufn().

decimalLength()

static uint32 decimalLength ( const uint64  v )
inlinestatic

Definition at line 264 of file d2s.c.

265{
266 /* This is slightly faster than a loop. */
267 /* The average output length is 16.38 digits, so we check high-to-low. */
268 /* Function precondition: v is not an 18, 19, or 20-digit number. */
269 /* (17 digits are sufficient for round-tripping.) */
270 Assert(v < 100000000000000000L);
271 if (v >= 10000000000000000L)
272 {
273 return 17;
274 }
275 if (v >= 1000000000000000L)
276 {
277 return 16;
278 }
279 if (v >= 100000000000000L)
280 {
281 return 15;
282 }
283 if (v >= 10000000000000L)
284 {
285 return 14;
286 }
287 if (v >= 1000000000000L)
288 {
289 return 13;
290 }
291 if (v >= 100000000000L)
292 {
293 return 12;
294 }
295 if (v >= 10000000000L)
296 {
297 return 11;
298 }
299 if (v >= 1000000000L)
300 {
301 return 10;
302 }
303 if (v >= 100000000L)
304 {
305 return 9;
306 }
307 if (v >= 10000000L)
308 {
309 return 8;
310 }
311 if (v >= 1000000L)
312 {
313 return 7;
314 }
315 if (v >= 100000L)
316 {
317 return 6;
318 }
319 if (v >= 10000L)
320 {
321 return 5;
322 }
323 if (v >= 1000L)
324 {
325 return 4;
326 }
327 if (v >= 100L)
328 {
329 return 3;
330 }
331 if (v >= 10L)
332 {
333 return 2;
334 }
335 return 1;
336}
Assert(PointerIsAligned(start, uint64))

References Assert().

Referenced by to_chars().

double_to_shortest_decimal()

char * double_to_shortest_decimal ( double  f )

Definition at line 1070 of file d2s.c.

1071{
1072 char *const result = (char *) palloc(DOUBLE_SHORTEST_DECIMAL_LEN);
1073
1075 return result;
1076}
int double_to_shortest_decimal_buf(double f, char *result)
Definition: d2s.c:1053
void * palloc(Size size)
Definition: mcxt.c:1365
#define DOUBLE_SHORTEST_DECIMAL_LEN
Definition: shortest_dec.h:44

References DOUBLE_SHORTEST_DECIMAL_LEN, double_to_shortest_decimal_buf(), and palloc().

double_to_shortest_decimal_buf()

int double_to_shortest_decimal_buf ( double  f,
char *  result 
)

Definition at line 1053 of file d2s.c.

1054{
1055 const int index = double_to_shortest_decimal_bufn(f, result);
1056
1057 /* Terminate the string. */
1059 result[index] = '0円';
1060 return index;
1061}
int double_to_shortest_decimal_bufn(double f, char *result)
Definition: d2s.c:1015
Definition: type.h:96

References Assert(), DOUBLE_SHORTEST_DECIMAL_LEN, and double_to_shortest_decimal_bufn().

Referenced by double_to_shortest_decimal(), float8out_internal(), and outDouble().

double_to_shortest_decimal_bufn()

int double_to_shortest_decimal_bufn ( double  f,
char *  result 
)

Definition at line 1015 of file d2s.c.

1016{
1017 /*
1018 * Step 1: Decode the floating-point number, and unify normalized and
1019 * subnormal cases.
1020 */
1021 const uint64 bits = double_to_bits(f);
1022
1023 /* Decode bits into sign, mantissa, and exponent. */
1024 const bool ieeeSign = ((bits >> (DOUBLE_MANTISSA_BITS + DOUBLE_EXPONENT_BITS)) & 1) != 0;
1025 const uint64 ieeeMantissa = bits & ((UINT64CONST(1) << DOUBLE_MANTISSA_BITS) - 1);
1026 const uint32 ieeeExponent = (uint32) ((bits >> DOUBLE_MANTISSA_BITS) & ((1u << DOUBLE_EXPONENT_BITS) - 1));
1027
1028 /* Case distinction; exit early for the easy cases. */
1029 if (ieeeExponent == ((1u << DOUBLE_EXPONENT_BITS) - 1u) || (ieeeExponent == 0 && ieeeMantissa == 0))
1030 {
1031 return copy_special_str(result, ieeeSign, (ieeeExponent != 0), (ieeeMantissa != 0));
1032 }
1033
1035 const bool isSmallInt = d2d_small_int(ieeeMantissa, ieeeExponent, &v);
1036
1037 if (!isSmallInt)
1038 {
1039 v = d2d(ieeeMantissa, ieeeExponent);
1040 }
1041
1042 return to_chars(v, ieeeSign, result);
1043}
#define DOUBLE_EXPONENT_BITS
Definition: d2s.c:66
static floating_decimal_64 d2d(const uint64 ieeeMantissa, const uint32 ieeeExponent)
Definition: d2s.c:346
static bool d2d_small_int(const uint64 ieeeMantissa, const uint32 ieeeExponent, floating_decimal_64 *v)
Definition: d2s.c:962
static int to_chars(floating_decimal_64 v, const bool sign, char *const result)
Definition: d2s.c:787
static uint64 double_to_bits(const double d)
Definition: ryu_common.h:125
static int copy_special_str(char *const result, const bool sign, const bool exponent, const bool mantissa)
Definition: ryu_common.h:95

References copy_special_str(), d2d(), d2d_small_int(), DOUBLE_EXPONENT_BITS, DOUBLE_MANTISSA_BITS, double_to_bits(), to_chars(), and UINT64CONST.

Referenced by double_to_shortest_decimal_buf().

mulShiftAll()

static uint64 mulShiftAll ( uint64  m,
const uint64 *const  mul,
const int32  j,
uint64 *const  vp,
uint64 *const  vm,
const uint32  mmShift 
)
inlinestatic

Definition at line 220 of file d2s.c.

222{
223 m <<= 1; /* m is maximum 55 bits */
224
225 uint64 tmp;
226 const uint64 lo = umul128(m, mul[0], &tmp);
227 uint64 hi;
228 const uint64 mid = tmp + umul128(m, mul[1], &hi);
229
230 hi += mid < tmp; /* overflow into hi */
231
232 const uint64 lo2 = lo + mul[0];
233 const uint64 mid2 = mid + mul[1] + (lo2 < lo);
234 const uint64 hi2 = hi + (mid2 < mid);
235
236 *vp = shiftright128(mid2, hi2, j - 64 - 1);
237
238 if (mmShift == 1)
239 {
240 const uint64 lo3 = lo - mul[0];
241 const uint64 mid3 = mid - mul[1] - (lo3 > lo);
242 const uint64 hi3 = hi - (mid3 > mid);
243
244 *vm = shiftright128(mid3, hi3, j - 64 - 1);
245 }
246 else
247 {
248 const uint64 lo3 = lo + lo;
249 const uint64 mid3 = mid + mid + (lo3 < lo);
250 const uint64 hi3 = hi + hi + (mid3 < mid);
251 const uint64 lo4 = lo3 - mul[0];
252 const uint64 mid4 = mid3 - mul[1] - (lo4 > lo3);
253 const uint64 hi4 = hi3 - (mid4 > mid3);
254
255 *vm = shiftright128(mid4, hi4, j - 64);
256 }
257
258 return shiftright128(mid, hi, j - 64 - 1);
259}
static uint64 umul128(const uint64 a, const uint64 b, uint64 *const productHi)
Definition: d2s_intrinsics.h:65
static uint64 shiftright128(const uint64 lo, const uint64 hi, const uint32 dist)

References j, shiftright128(), and umul128().

Referenced by d2d().

multipleOfPowerOf2()

static bool multipleOfPowerOf2 ( const uint64  value,
const uint32  p 
)
inlinestatic

Definition at line 106 of file d2s.c.

107{
108 /* return __builtin_ctzll(value) >= p; */
109 return (value & ((UINT64CONST(1) << p) - 1)) == 0;
110}
static struct @169 value

References UINT64CONST, and value.

Referenced by d2d().

multipleOfPowerOf5()

static bool multipleOfPowerOf5 ( const uint64  value,
const uint32  p 
)
inlinestatic

Definition at line 95 of file d2s.c.

96{
97 /*
98 * I tried a case distinction on p, but there was no performance
99 * difference.
100 */
101 return pow5Factor(value) >= p;
102}
static uint32 pow5Factor(uint64 value)
Definition: d2s.c:74

References pow5Factor(), and value.

Referenced by d2d().

pow5Factor()

static uint32 pow5Factor ( uint64  value )
inlinestatic

Definition at line 74 of file d2s.c.

75{
76 uint32 count = 0;
77
78 for (;;)
79 {
80 Assert(value != 0);
81 const uint64 q = div5(value);
82 const uint32 r = (uint32) (value - 5 * q);
83
84 if (r != 0)
85 break;
86
87 value = q;
88 ++count;
89 }
90 return count;
91}

References Assert(), div5(), and value.

Referenced by multipleOfPowerOf5().

to_chars()

static int to_chars ( floating_decimal_64  v,
const bool  sign,
char *const  result 
)
inlinestatic

Definition at line 787 of file d2s.c.

788{
789 /* Step 5: Print the decimal representation. */
790 int index = 0;
791
793 uint32 olength = decimalLength(output);
794 int32 exp = v.exponent + olength - 1;
795
796 if (sign)
797 {
798 result[index++] = '-';
799 }
800
801 /*
802 * The thresholds for fixed-point output are chosen to match printf
803 * defaults. Beware that both the code of to_chars_df and the value of
804 * DOUBLE_SHORTEST_DECIMAL_LEN are sensitive to these thresholds.
805 */
806 if (exp >= -4 && exp < 15)
807 return to_chars_df(v, olength, result + index) + sign;
808
809 /*
810 * If v.exponent is exactly 0, we might have reached here via the small
811 * integer fast path, in which case v.mantissa might contain trailing
812 * (decimal) zeros. For scientific notation we need to move these zeros
813 * into the exponent. (For fixed point this doesn't matter, which is why
814 * we do this here rather than above.)
815 *
816 * Since we already calculated the display exponent (exp) above based on
817 * the old decimal length, that value does not change here. Instead, we
818 * just reduce the display length for each digit removed.
819 *
820 * If we didn't get here via the fast path, the raw exponent will not
821 * usually be 0, and there will be no trailing zeros, so we pay no more
822 * than one div10/multiply extra cost. We claw back half of that by
823 * checking for divisibility by 2 before dividing by 10.
824 */
825 if (v.exponent == 0)
826 {
827 while ((output & 1) == 0)
828 {
829 const uint64 q = div10(output);
830 const uint32 r = (uint32) (output - 10 * q);
831
832 if (r != 0)
833 break;
834 output = q;
835 --olength;
836 }
837 }
838
839 /*----
840 * Print the decimal digits.
841 *
842 * The following code is equivalent to:
843 *
844 * for (uint32 i = 0; i < olength - 1; ++i) {
845 * const uint32 c = output % 10; output /= 10;
846 * result[index + olength - i] = (char) ('0' + c);
847 * }
848 * result[index] = '0' + output % 10;
849 *----
850 */
851
852 uint32 i = 0;
853
854 /*
855 * We prefer 32-bit operations, even on 64-bit platforms. We have at most
856 * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
857 * uint32, we cut off 8 digits, so the rest will fit into uint32.
858 */
859 if ((output >> 32) != 0)
860 {
861 /* Expensive 64-bit division. */
862 const uint64 q = div1e8(output);
863 uint32 output2 = (uint32) (output - 100000000 * q);
864
865 output = q;
866
867 const uint32 c = output2 % 10000;
868
869 output2 /= 10000;
870
871 const uint32 d = output2 % 10000;
872 const uint32 c0 = (c % 100) << 1;
873 const uint32 c1 = (c / 100) << 1;
874 const uint32 d0 = (d % 100) << 1;
875 const uint32 d1 = (d / 100) << 1;
876
877 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
878 memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
879 memcpy(result + index + olength - i - 5, DIGIT_TABLE + d0, 2);
880 memcpy(result + index + olength - i - 7, DIGIT_TABLE + d1, 2);
881 i += 8;
882 }
883
884 uint32 output2 = (uint32) output;
885
886 while (output2 >= 10000)
887 {
888 const uint32 c = output2 - 10000 * (output2 / 10000);
889
890 output2 /= 10000;
891
892 const uint32 c0 = (c % 100) << 1;
893 const uint32 c1 = (c / 100) << 1;
894
895 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c0, 2);
896 memcpy(result + index + olength - i - 3, DIGIT_TABLE + c1, 2);
897 i += 4;
898 }
899 if (output2 >= 100)
900 {
901 const uint32 c = (output2 % 100) << 1;
902
903 output2 /= 100;
904 memcpy(result + index + olength - i - 1, DIGIT_TABLE + c, 2);
905 i += 2;
906 }
907 if (output2 >= 10)
908 {
909 const uint32 c = output2 << 1;
910
911 /*
912 * We can't use memcpy here: the decimal dot goes between these two
913 * digits.
914 */
915 result[index + olength - i] = DIGIT_TABLE[c + 1];
916 result[index] = DIGIT_TABLE[c];
917 }
918 else
919 {
920 result[index] = (char) ('0' + output2);
921 }
922
923 /* Print decimal point if needed. */
924 if (olength > 1)
925 {
926 result[index + 1] = '.';
927 index += olength + 1;
928 }
929 else
930 {
931 ++index;
932 }
933
934 /* Print the exponent. */
935 result[index++] = 'e';
936 if (exp < 0)
937 {
938 result[index++] = '-';
939 exp = -exp;
940 }
941 else
942 result[index++] = '+';
943
944 if (exp >= 100)
945 {
946 const int32 c = exp % 10;
947
948 memcpy(result + index, DIGIT_TABLE + 2 * (exp / 10), 2);
949 result[index + 2] = (char) ('0' + c);
950 index += 3;
951 }
952 else
953 {
954 memcpy(result + index, DIGIT_TABLE + 2 * exp, 2);
955 index += 2;
956 }
957
958 return index;
959}
static int to_chars_df(const floating_decimal_64 v, const uint32 olength, char *const result)
Definition: d2s.c:631
static uint32 decimalLength(const uint64 v)
Definition: d2s.c:264
static uint64 div1e8(const uint64 x)
char sign
Definition: informix.c:693
static const char DIGIT_TABLE[200]
Definition: numutils.c:29
c
char * c
Definition: preproc-cursor.c:31

References decimalLength(), DIGIT_TABLE, div10(), div1e8(), floating_decimal_64::exponent, i, floating_decimal_64::mantissa, output, sign, and to_chars_df().

Referenced by double_to_shortest_decimal_bufn().

to_chars_df()

static int to_chars_df ( const floating_decimal_64  v,
const uint32  olength,
char *const  result 
)
inlinestatic

Definition at line 631 of file d2s.c.

632{
633 /* Step 5: Print the decimal representation. */
634 int index = 0;
635
637 int32 exp = v.exponent;
638
639 /*----
640 * On entry, mantissa * 10^exp is the result to be output.
641 * Caller has already done the - sign if needed.
642 *
643 * We want to insert the point somewhere depending on the output length
644 * and exponent, which might mean adding zeros:
645 *
646 * exp | format
647 * 1+ | ddddddddd000000
648 * 0 | ddddddddd
649 * -1 .. -len+1 | dddddddd.d to d.ddddddddd
650 * -len ... | 0.ddddddddd to 0.000dddddd
651 */
652 uint32 i = 0;
653 int32 nexp = exp + olength;
654
655 if (nexp <= 0)
656 {
657 /* -nexp is number of 0s to add after '.' */
658 Assert(nexp >= -3);
659 /* 0.000ddddd */
660 index = 2 - nexp;
661 /* won't need more than this many 0s */
662 memcpy(result, "0.000000", 8);
663 }
664 else if (exp < 0)
665 {
666 /*
667 * dddd.dddd; leave space at the start and move the '.' in after
668 */
669 index = 1;
670 }
671 else
672 {
673 /*
674 * We can save some code later by pre-filling with zeros. We know that
675 * there can be no more than 16 output digits in this form, otherwise
676 * we would not choose fixed-point output.
677 */
678 Assert(exp < 16 && exp + olength <= 16);
679 memset(result, '0', 16);
680 }
681
682 /*
683 * We prefer 32-bit operations, even on 64-bit platforms. We have at most
684 * 17 digits, and uint32 can store 9 digits. If output doesn't fit into
685 * uint32, we cut off 8 digits, so the rest will fit into uint32.
686 */
687 if ((output >> 32) != 0)
688 {
689 /* Expensive 64-bit division. */
690 const uint64 q = div1e8(output);
691 uint32 output2 = (uint32) (output - 100000000 * q);
692 const uint32 c = output2 % 10000;
693
694 output = q;
695 output2 /= 10000;
696
697 const uint32 d = output2 % 10000;
698 const uint32 c0 = (c % 100) << 1;
699 const uint32 c1 = (c / 100) << 1;
700 const uint32 d0 = (d % 100) << 1;
701 const uint32 d1 = (d / 100) << 1;
702
703 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
704 memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
705 memcpy(result + index + olength - i - 6, DIGIT_TABLE + d0, 2);
706 memcpy(result + index + olength - i - 8, DIGIT_TABLE + d1, 2);
707 i += 8;
708 }
709
710 uint32 output2 = (uint32) output;
711
712 while (output2 >= 10000)
713 {
714 const uint32 c = output2 - 10000 * (output2 / 10000);
715 const uint32 c0 = (c % 100) << 1;
716 const uint32 c1 = (c / 100) << 1;
717
718 output2 /= 10000;
719 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c0, 2);
720 memcpy(result + index + olength - i - 4, DIGIT_TABLE + c1, 2);
721 i += 4;
722 }
723 if (output2 >= 100)
724 {
725 const uint32 c = (output2 % 100) << 1;
726
727 output2 /= 100;
728 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
729 i += 2;
730 }
731 if (output2 >= 10)
732 {
733 const uint32 c = output2 << 1;
734
735 memcpy(result + index + olength - i - 2, DIGIT_TABLE + c, 2);
736 }
737 else
738 {
739 result[index] = (char) ('0' + output2);
740 }
741
742 if (index == 1)
743 {
744 /*
745 * nexp is 1..15 here, representing the number of digits before the
746 * point. A value of 16 is not possible because we switch to
747 * scientific notation when the display exponent reaches 15.
748 */
749 Assert(nexp < 16);
750 /* gcc only seems to want to optimize memmove for small 2^n */
751 if (nexp & 8)
752 {
753 memmove(result + index - 1, result + index, 8);
754 index += 8;
755 }
756 if (nexp & 4)
757 {
758 memmove(result + index - 1, result + index, 4);
759 index += 4;
760 }
761 if (nexp & 2)
762 {
763 memmove(result + index - 1, result + index, 2);
764 index += 2;
765 }
766 if (nexp & 1)
767 {
768 result[index - 1] = result[index];
769 }
770 result[nexp] = '.';
771 index = olength + 1;
772 }
773 else if (exp >= 0)
774 {
775 /* we supplied the trailing zeros earlier, now just set the length. */
776 index = olength + exp;
777 }
778 else
779 {
780 index = olength + (2 - nexp);
781 }
782
783 return index;
784}

References Assert(), DIGIT_TABLE, div1e8(), floating_decimal_64::exponent, i, floating_decimal_64::mantissa, and output.

Referenced by to_chars().

AltStyle によって変換されたページ (->オリジナル) /