Logo
OpenCV  3.0.0
Open Source Computer Vision
[フレーム]
Classes | Enumerations | Functions
Machine Learning

Classes

class   cv::ml::ANN_MLP
  Artificial Neural Networks - Multi-Layer Perceptrons. More...
 
class   cv::ml::Boost
  Boosted tree classifier derived from DTrees. More...
 
class   cv::ml::DTrees
  The class represents a single decision tree or a collection of decision trees. More...
 
class   cv::ml::EM
  The class implements the Expectation Maximization algorithm. More...
 
class   cv::ml::KNearest
  The class implements K-Nearest Neighbors model. More...
 
  Implements Logistic Regression classifier. More...
 
  Bayes classifier for normally distributed data. More...
 
  The structure represents the logarithmic grid range of statmodel parameters. More...
 
class   cv::ml::RTrees
  The class implements the random forest predictor. More...
 
  Base class for statistical models in OpenCV ML. More...
 
class   cv::ml::SVM
  Support Vector Machines. More...
 
  Class encapsulating training data. More...
 

Enumerations

  Error types More...
 
  Sample types. More...
 
  Variable types. More...
 

Functions

void  cv::ml::createConcentricSpheresTestSet (int nsamples, int nfeatures, int nclasses, OutputArray samples, OutputArray responses)
  Creates test set. More...
 
void  cv::ml::randGaussMixture (InputArray means, InputArray covs, InputArray weights, int nsamples, OutputArray samples, OutputArray sampClasses)
  Generates sample from gaussian mixture distribution. More...
 
void  cv::ml::randMVNormal (InputArray mean, InputArray cov, int nsamples, OutputArray samples)
  Generates sample from multivariate normal distribution. More...
 

Detailed Description

The Machine Learning Library (MLL) is a set of classes and functions for statistical classification, regression, and clustering of data.

Most of the classification and regression algorithms are implemented as C++ classes. As the algorithms have different sets of features (like an ability to handle missing measurements or categorical input variables), there is a little common ground between the classes. This common ground is defined by the class cv::ml::StatModel that all the other ML classes are derived from.

See detailed overview here: Machine Learning Overview.

Enumeration Type Documentation

Error types

Enumerator
TEST_ERROR 
TRAIN_ERROR 

Sample types.

Enumerator
ROW_SAMPLE 

each training sample is a row of samples

COL_SAMPLE 

each training sample occupies a column of samples

Variable types.

Enumerator
VAR_NUMERICAL 

same as VAR_ORDERED

VAR_ORDERED 

ordered variables

VAR_CATEGORICAL 

categorical variables

Function Documentation

void cv::ml::createConcentricSpheresTestSet ( int  nsamples,
int  nfeatures,
int  nclasses,
OutputArray  samples,
OutputArray  responses 
)

Creates test set.

void cv::ml::randGaussMixture ( InputArray  means,
InputArray  covs,
InputArray  weights,
int  nsamples,
OutputArray  samples,
OutputArray  sampClasses 
)

Generates sample from gaussian mixture distribution.

void cv::ml::randMVNormal ( InputArray  mean,
InputArray  cov,
int  nsamples,
OutputArray  samples 
)

Generates sample from multivariate normal distribution.

Parameters
mean an average row vector
cov symmetric covariation matrix
nsamples returned samples count
samples returned samples array

Generated on Wed Jun 3 2015 21:57:09 for OpenCV by   doxygen 1.8.7

AltStyle によって変換されたページ (->オリジナル) /