WaldBoost object detector from [112] .
More...
#include "xobjdetect.hpp"
Inheritance diagram for cv::xobjdetect::WaldBoost:
Public Member Functions
Predict objects class given object that can compute object features.
More...
virtual std::vector< int >
train (
Mat &data, const
Mat &labels, bool use_fast_log=false)=0
Clears the algorithm state.
More...
virtual bool
empty () const
Returns true if the
Algorithm is empty (e.g. in the very beginning or after unsuccessful read.
More...
Reads algorithm parameters from a file storage.
More...
Stores algorithm parameters in a file storage.
More...
Additional Inherited Members
template<typename _Tp >
Loads algorithm from the file.
More...
template<typename _Tp >
template<typename _Tp >
Reads algorithm from the file node.
More...
Detailed Description
Member Function Documentation
virtual float cv::xobjdetect::WaldBoost::predict
(
const
Ptr<
FeatureEvaluator > &
feature_evaluator )
const
pure virtual
Predict objects class given object that can compute object features.
Returns unnormed confidence value — measure of confidence that object is from class +1.
- Parameters
-
feature_evaluator object that can compute features by demand
virtual std::vector<int> cv::xobjdetect::WaldBoost::train
(
Mat &
data,
bool
use_fast_log = false
)
pure virtual
Train WaldBoost cascade for given data.
Returns feature indices chosen for cascade. Feature enumeration starts from 0.
- Parameters
-
data matrix of feature values, size M x N, one feature per row
labels matrix of samples class labels, size 1 x N. Labels can be from {-1, +1}
use_fast_log
The documentation for this class was generated from the following file:
- /builds/master-contrib_docs-mac/opencv_contrib/modules/xobjdetect/include/opencv2/xobjdetect.hpp