Train a model using TPU v5e
With a smaller 256-chip footprint per Pod, TPU v5e is optimized to be a high value product for transformer, text-to-image, and Convolutional Neural Network (CNN) training, fine-tuning, and serving. For more information about using Cloud TPU v5e for serving, see Inference using v5e.
For more information about Cloud TPU v5e TPU hardware and configurations, see TPU v5e.
Get started
The following sections describe how to get started using TPU v5e.
Request quota
You need quota to use TPU v5e for training. There are different quota types for on-demand TPUs, reserved TPUs, and TPU Spot VMs. There are separate quotas required if you're using your TPU v5e for inference. For more information about quotas, see Quotas. To request TPU v5e quota, contact Cloud Sales.
Create a Google Cloud account and project
You need a Google Cloud account and project to use Cloud TPU. For more information, see Set up a Cloud TPU environment.
Create a Cloud TPU
The best practice is to provision Cloud TPU v5es as queued resources
using the queued-resource create command. For more information, see
Manage queued resources.
You can also use the Create Node API (gcloud compute tpus tpu-vm create) to
provision Cloud TPU v5es. For more information, see Manage TPU resources.
For more information about available v5e configurations for training, see Cloud TPU v5e types for training.
Framework setup
This section describes the general setup process for custom model training using JAX or PyTorch with TPU v5e.
For inference setup instructions, see v5e inference introduction.
Define some environment variables:
exportPROJECT_ID=your_project_ID exportACCELERATOR_TYPE=v5litepod-16 exportZONE=us-west4-a exportTPU_NAME=your_tpu_name exportQUEUED_RESOURCE_ID=your_queued_resource_id
Setup for JAX
If you have slice shapes greater than 8 chips, you will have multiple VMs in one
slice. In this case, you need to use the --worker=all flag to run the
installation on all TPU VMs in a single step without using SSH to log into each
separately:
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='pip install -U "jax[tpu]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html'
Command flag descriptions
You can run the following command to check number of devices (the outputs shown here were produced with a v5litepod-16 slice). This code tests that everything is installed correctly by checking that JAX sees the Cloud TPU TensorCores and can run basic operations:
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='python3 -c "import jax; print(jax.device_count()); print(jax.local_device_count())"'
The output will be similar to the following:
SSH:Attemptingtoconnecttoworker0...
SSH:Attemptingtoconnecttoworker1...
SSH:Attemptingtoconnecttoworker2...
SSH:Attemptingtoconnecttoworker3...
16
4
16
4
16
4
16
4
jax.device_count() shows the total number of chips in the given slice.
jax.local_device_count() indicates the count of chips accessible by a single
VM in this slice.
# Check the number of chips in the given slice by summing the count of chips
# from all VMs through the
# jax.local_device_count() API call.
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='python3 -c "import jax; xs=jax.numpy.ones(jax.local_device_count()); print(jax.pmap(lambda x: jax.lax.psum(x, \"i\"), axis_name=\"i\")(xs))"'
The output will be similar to the following:
SSH:Attemptingtoconnecttoworker0...
SSH:Attemptingtoconnecttoworker1...
SSH:Attemptingtoconnecttoworker2...
SSH:Attemptingtoconnecttoworker3...
[16.16.16.16.]
[16.16.16.16.]
[16.16.16.16.]
[16.16.16.16.]
Try the JAX Tutorials in this document to get started with v5e training using JAX.
Setup for PyTorch
Note that v5e only supports the PJRT runtime and PyTorch 2.1+ will use PJRT as the default runtime for all TPU versions.
This section describes how to start using PJRT on v5e with PyTorch/XLA with commands for all workers.
Install dependencies
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command=' sudo apt-get update -y sudo apt-get install libomp5 -y pip install mkl mkl-include pip install tf-nightly tb-nightly tbp-nightly pip install numpy sudo apt-get install libopenblas-dev -y pip install torch~=PYTORCH_VERSION torchvision torch_xla[tpu]~=PYTORCH_VERSION -f https://storage.googleapis.com/libtpu-releases/index.html -f https://storage.googleapis.com/libtpu-wheels/index.html'
Replace PYTORCH_VERSION with the version of PyTorch you want to use.
PYTORCH_VERSION is used to specify the same version for PyTorch/XLA. 2.6.0
is recommended.
For more information about versions of PyTorch and PyTorch/XLA, see PyTorch - Get Started and PyTorch/XLA releases.
For more information on installing PyTorch/XLA, see PyTorch/XLA installation.
If you get an error when installing the wheels for torch, torch_xla, or
torchvision like
pkg_resources.extern.packaging.requirements.InvalidRequirement: Expected end
or semicolon (after name and no valid version specifier) torch==nightly+20230222,
downgrade your version with this command:
pip3installsetuptools==62.1.0
Run a script with PJRT
unsetLD_PRELOAD
The following is an example using a Python script to do a calculation on a v5e VM:
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/.local/lib/
export PJRT_DEVICE=TPU
export PT_XLA_DEBUG=0
export USE_TORCH=ON
unset LD_PRELOAD
export TPU_LIBRARY_PATH=$HOME/.local/lib/python3.10/site-packages/libtpu/libtpu.so
python3 -c "import torch; import torch_xla; import torch_xla.core.xla_model as xm; print(xm.xla_device()); dev = xm.xla_device(); t1 = torch.randn(3,3,device=dev); t2 = torch.randn(3,3,device=dev); print(t1 + t2)"'
This generates output similar to the following:
SSH:Attemptingtoconnecttoworker0...
SSH:Attemptingtoconnecttoworker1...
xla:0
tensor([[1.8611,-0.3114,-2.4208],
[-1.0731,0.3422,3.1445],
[0.5743,0.2379,1.1105]],device='xla:0')
xla:0
tensor([[1.8611,-0.3114,-2.4208],
[-1.0731,0.3422,3.1445],
[0.5743,0.2379,1.1105]],device='xla:0')
Try the PyTorch Tutorials in this document to get started with v5e training using PyTorch.
Delete your TPU and queued resource at the end of your session. To delete a queued resource, delete the slice and then the queued resource in 2 steps:
gcloudcomputetpustpu-vmdelete${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
gcloudcomputetpusqueued-resourcesdelete${QUEUED_RESOURCE_ID}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
These two steps can also be used to remove queued resource requests that are in
the FAILED state.
JAX/FLAX examples
The following sections describe examples of how to train JAX and FLAX models on TPU v5e.
Train ImageNet on v5e
This tutorial describes how to train ImageNet on v5e using fake input data. If you want to use real data, refer to the README file on GitHub.
Set up
Create environment variables:
exportPROJECT_ID=your-project-id exportTPU_NAME=your-tpu-name exportZONE=us-west4-a exportACCELERATOR_TYPE=v5litepod-8 exportRUNTIME_VERSION=v2-alpha-tpuv5-lite exportSERVICE_ACCOUNT=your-service-account exportQUEUED_RESOURCE_ID=your-queued-resource-id
Environment variable descriptions
Variable Description PROJECT_IDYour Google Cloud project ID. Use an existing project or create a new one. TPU_NAMEThe name of the TPU. ZONEThe zone in which to create the TPU VM. For more information about supported zones, see TPU regions and zones. ACCELERATOR_TYPEThe accelerator type specifies the version and size of the Cloud TPU you want to create. For more information about supported accelerator types for each TPU version, see TPU versions. RUNTIME_VERSIONThe Cloud TPU software version. SERVICE_ACCOUNTThe email address for your service account. You can find it by going to the Service Accounts page in the Google Cloud console. For example:
tpu-service-account@PROJECT_ID.iam.gserviceaccount.comQUEUED_RESOURCE_IDThe user-assigned text ID of the queued resource request. -
gcloudcomputetpusqueued-resourcescreate${QUEUED_RESOURCE_ID}\ --node-id=${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --accelerator-type=${ACCELERATOR_TYPE}\ --runtime-version=${RUNTIME_VERSION}\ --service-account=${SERVICE_ACCOUNT}You will be able to SSH to your TPU VM once your queued resource is in the
ACTIVEstate:gcloudcomputetpusqueued-resourcesdescribe${QUEUED_RESOURCE_ID}\ --project=${PROJECT_ID}\ --zone=${ZONE}When the QueuedResource is in the
ACTIVEstate, the output will be similar to the following:state:ACTIVE Install newest version of JAX and jaxlib:
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command='pip install -U "jax[tpu]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html'Clone the ImageNet model and install the corresponding requirements:
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command="git clone https://github.com/coolkp/flax.git && cd flax && git checkout pmap-orbax-conversion && git pull"To generate fake data, the model needs information on the dimensions of the dataset. This can be gathered from the ImageNet dataset's metadata:
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command="cd flax/examples/imagenet && pip install -r requirements-cloud-tpu.txt"
Train the model
Once all the previous steps are done, you can train the model.
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command="cd flax/examples/imagenet && bash ../../tests/download_dataset_metadata.sh && JAX_PLATFORMS=tpu python imagenet_fake_data_benchmark.py"
Delete the TPU and queued resource
Delete your TPU and queued resource at the end of your session.
gcloudcomputetpustpu-vmdelete${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
gcloudcomputetpusqueued-resourcesdelete${QUEUED_RESOURCE_ID}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
Hugging Face FLAX Models
Hugging Face models implemented in FLAX work out of the box on Cloud TPU v5e. This section provides instructions for running popular models.
Train ViT on Imagenette
This tutorial shows you how to train the Vision Transformer (ViT) model from HuggingFace using the Fast AI Imagenette dataset on Cloud TPU v5e.
The ViT model was the first one that successfully trained a Transformer encoder on ImageNet with excellent results compared to convolutional networks. For more information, see ViT overview.
Set up
Create environment variables:
exportPROJECT_ID=your-project-id exportTPU_NAME=your-tpu-name exportZONE=us-west4-a exportACCELERATOR_TYPE=v5litepod-16 exportRUNTIME_VERSION=v2-alpha-tpuv5-lite exportSERVICE_ACCOUNT=your-service-account exportQUEUED_RESOURCE_ID=your-queued-resource-id
Environment variable descriptions
Variable Description PROJECT_IDYour Google Cloud project ID. Use an existing project or create a new one. TPU_NAMEThe name of the TPU. ZONEThe zone in which to create the TPU VM. For more information about supported zones, see TPU regions and zones. ACCELERATOR_TYPEThe accelerator type specifies the version and size of the Cloud TPU you want to create. For more information about supported accelerator types for each TPU version, see TPU versions. RUNTIME_VERSIONThe Cloud TPU software version. SERVICE_ACCOUNTThe email address for your service account. You can find it by going to the Service Accounts page in the Google Cloud console. For example:
tpu-service-account@PROJECT_ID.iam.gserviceaccount.comQUEUED_RESOURCE_IDThe user-assigned text ID of the queued resource request. -
gcloudcomputetpusqueued-resourcescreate${QUEUED_RESOURCE_ID}\ --node-id=${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --accelerator-type=${ACCELERATOR_TYPE}\ --runtime-version=${RUNTIME_VERSION}\ --service-account=${SERVICE_ACCOUNT}You will be able to SSH to your TPU VM once your queued resource is in state
ACTIVE:gcloudcomputetpusqueued-resourcesdescribe${QUEUED_RESOURCE_ID}\ --project=${PROJECT_ID}\ --zone=${ZONE}When the queued resource is in the
ACTIVEstate, the output will be similar to the following:state:ACTIVE Install JAX and its library:
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command='pip install -U "jax[tpu]" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html'Download Hugging Face repository and install requirements:
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command='git clone https://github.com/huggingface/transformers.git && cd transformers && pip install . && pip install -r examples/flax/_tests_requirements.txt && pip install --upgrade huggingface-hub urllib3 zipp && pip install tensorflow==2.19 && sed -i 's/torchvision==0.12.0+cpu/torchvision==0.22.1/' examples/flax/vision/requirements.txt && pip install -r examples/flax/vision/requirements.txt && pip install tf-keras'Download the Imagenette dataset:
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command='cd transformers && wget https://s3.amazonaws.com/fast-ai-imageclas/imagenette2.tgz && tar -xvzf imagenette2.tgz'
Train the model
Train the model with a pre-mapped buffer at 4GB.
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='cd transformers && JAX_PLATFORMS=tpu python3 examples/flax/vision/run_image_classification.py --train_dir "imagenette2/train" --validation_dir "imagenette2/val" --output_dir "./vit-imagenette" --learning_rate 1e-3 --preprocessing_num_workers 32 --per_device_train_batch_size 8 --per_device_eval_batch_size 8 --model_name_or_path google/vit-base-patch16-224-in21k --num_train_epochs 3'
Delete the TPU and queued resource
Delete your TPU and queued-resource at the end of your session.
gcloudcomputetpustpu-vmdelete${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
gcloudcomputetpusqueued-resourcesdelete${QUEUED_RESOURCE_ID}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
ViT benchmarking results
The training script was run on v5litepod-4, v5litepod-16, and v5litepod-64. The following table shows the throughputs with different accelerator types.
Train Diffusion on Pokémon
This tutorial shows you how to train the Stable Diffusion model from HuggingFace using the Pokémon dataset on Cloud TPU v5e.
The Stable Diffusion model is a latent text-to-image model that generates photo-realistic images from any text input. For more information, see the following resources:
Set up
Set an environment variable for the name of your storage bucket:
exportGCS_BUCKET_NAME=your_bucket_name
Set up a storage bucket for your model output:
gcloudstoragebucketscreategs://GCS_BUCKET_NAME\ --project=your_project\ --location=us-west1
Create environment variables:
exportPROJECT_ID=your-project-id exportTPU_NAME=your-tpu-name exportZONE=us-west1-c exportACCELERATOR_TYPE=v5litepod-16 exportRUNTIME_VERSION=v2-alpha-tpuv5-lite exportSERVICE_ACCOUNT=your-service-account exportQUEUED_RESOURCE_ID=your-queued-resource-id
Environment variable descriptions
Variable Description PROJECT_IDYour Google Cloud project ID. Use an existing project or create a new one. TPU_NAMEThe name of the TPU. ZONEThe zone in which to create the TPU VM. For more information about supported zones, see TPU regions and zones. ACCELERATOR_TYPEThe accelerator type specifies the version and size of the Cloud TPU you want to create. For more information about supported accelerator types for each TPU version, see TPU versions. RUNTIME_VERSIONThe Cloud TPU software version. SERVICE_ACCOUNTThe email address for your service account. You can find it by going to the Service Accounts page in the Google Cloud console. For example:
tpu-service-account@PROJECT_ID.iam.gserviceaccount.comQUEUED_RESOURCE_IDThe user-assigned text ID of the queued resource request. -
gcloudcomputetpusqueued-resourcescreate${QUEUED_RESOURCE_ID}\ --node-id=${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --accelerator-type=${ACCELERATOR_TYPE}\ --runtime-version=${RUNTIME_VERSION}\ --service-account=${SERVICE_ACCOUNT}You will be able to SSH to your TPU VM once your queued resource is in the
ACTIVEstate:gcloudcomputetpusqueued-resourcesdescribe${QUEUED_RESOURCE_ID}\ --project=${PROJECT_ID}\ --zone=${ZONE}When the queued resource is in the
ACTIVEstate, the output will be similar to the following:state:ACTIVE Install JAX and its library.
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command='pip install "jax[tpu]==0.4.16" -f https://storage.googleapis.com/jax-releases/libtpu_releases.html'Download the HuggingFace repository and install requirements.
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command='git clone https://github.com/RissyRan/diffusers.git && cd diffusers && pip install . && pip install -U -r examples/text_to_image/requirements_flax.txt && pip install tensorflow==2.17.1 clu && pip install tensorboard==2.17.1'
Train the model
Train the model with a pre-mapped buffer at 4GB.
gcloudcomputetpustpu-vmssh${TPU_NAME}--zone=${ZONE}--project=${PROJECT_ID}--worker=all--command="
git clone https://github.com/google/maxdiffusion
cd maxdiffusion
pip3 install jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
pip3 install -r requirements.txt
pip3 install .
pip3 install gcsfs
export LIBTPU_INIT_ARGS=''
python -m src.maxdiffusion.train src/maxdiffusion/configs/base_2_base.yml run_name=my_run \
jax_cache_dir=gs://${GCS_BUCKET_NAME} activations_dtype=bfloat16 weights_dtype=bfloat16 \
per_device_batch_size=1 precision=DEFAULT dataset_save_location=gs://${GCS_BUCKET_NAME} \
output_dir=gs://${GCS_BUCKET_NAME}/ attention=flash"
Clean up
Delete your TPU, queued resource, and Cloud Storage bucket at the end of your session.
Delete your TPU:
gcloudcomputetpustpu-vmdelete${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --quietDelete the queued resource:
gcloudcomputetpusqueued-resourcesdelete${QUEUED_RESOURCE_ID}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --quietDelete the Cloud Storage bucket:
gcloudstoragerm-rgs://${GCS_BUCKET_NAME}
Benchmarking results for diffusion
The training script ran on v5litepod-4, v5litepod-16, and v5litepod-64. The following table shows the throughputs.
PyTorch/XLA
The following sections describe examples of how to train PyTorch/XLA models on TPU v5e.
Train ResNet using the PJRT runtime
PyTorch/XLA is migrating from XRT to PjRt from PyTorch 2.0+. Here are the updated instructions to set up v5e for PyTorch/XLA training workloads.
Set up
Create environment variables:
exportPROJECT_ID=your-project-id exportTPU_NAME=your-tpu-name exportZONE=us-west4-a exportACCELERATOR_TYPE=v5litepod-16 exportRUNTIME_VERSION=v2-alpha-tpuv5-lite exportSERVICE_ACCOUNT=your-service-account exportQUEUED_RESOURCE_ID=your-queued-resource-id
Environment variable descriptions
Variable Description PROJECT_IDYour Google Cloud project ID. Use an existing project or create a new one. TPU_NAMEThe name of the TPU. ZONEThe zone in which to create the TPU VM. For more information about supported zones, see TPU regions and zones. ACCELERATOR_TYPEThe accelerator type specifies the version and size of the Cloud TPU you want to create. For more information about supported accelerator types for each TPU version, see TPU versions. RUNTIME_VERSIONThe Cloud TPU software version. SERVICE_ACCOUNTThe email address for your service account. You can find it by going to the Service Accounts page in the Google Cloud console. For example:
tpu-service-account@PROJECT_ID.iam.gserviceaccount.comQUEUED_RESOURCE_IDThe user-assigned text ID of the queued resource request. -
gcloudcomputetpusqueued-resourcescreate${QUEUED_RESOURCE_ID}\ --node-id=${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --accelerator-type=${ACCELERATOR_TYPE}\ --runtime-version=${RUNTIME_VERSION}\ --service-account=${SERVICE_ACCOUNT}You will be able to SSH to your TPU VM once your QueuedResource is in
ACTIVEstate:gcloudcomputetpusqueued-resourcesdescribe${QUEUED_RESOURCE_ID}\ --project=${PROJECT_ID}\ --zone=${ZONE}When the queued resource is in the
ACTIVEstate, the output will be similar to the following:state:ACTIVE Install Torch/XLA specific dependencies
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command=' sudo apt-get update -y sudo apt-get install libomp5 -y pip3 install mkl mkl-include pip3 install tf-nightly tb-nightly tbp-nightly pip3 install numpy sudo apt-get install libopenblas-dev -y pip install torch==PYTORCH_VERSION torchvision torch_xla[tpu]==PYTORCH_VERSION -f https://storage.googleapis.com/libtpu-releases/index.html -f https://storage.googleapis.com/libtpu-wheels/index.html'
Replace
PYTORCH_VERSIONwith the version of PyTorch you want to use.PYTORCH_VERSIONis used to specify the same version for PyTorch/XLA. 2.6.0 is recommended.For more information about versions of PyTorch and PyTorch/XLA, see PyTorch - Get Started and PyTorch/XLA releases.
For more information on installing PyTorch/XLA, see PyTorch/XLA installation.
Train the ResNet model
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='
date
export PJRT_DEVICE=TPU
export PT_XLA_DEBUG=0
export USE_TORCH=ON
export XLA_USE_BF16=1
export LIBTPU_INIT_ARGS=--xla_jf_auto_cross_replica_sharding
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export TPU_LIBRARY_PATH=$HOME/.local/lib/python3.10/site-packages/libtpu/libtpu.so
git clone https://github.com/pytorch/xla.git
cd xla/
git checkout release-r2.6
python3 test/test_train_mp_imagenet.py --model=resnet50 --fake_data --num_epochs=1 --num_workers=16 --log_steps=300 --batch_size=64 --profile'
Delete the TPU and queued resource
Delete your TPU and queued resource at the end of your session.
gcloudcomputetpustpu-vmdelete${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
gcloudcomputetpusqueued-resourcesdelete${QUEUED_RESOURCE_ID}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
Benchmark result
The following table shows the benchmark throughputs.
Train ViT on v5e
This tutorial will cover how to run VIT on v5e using the HuggingFace repository on PyTorch/XLA on the cifar10 dataset.
Set up
Create environment variables:
exportPROJECT_ID=your-project-id exportTPU_NAME=your-tpu-name exportZONE=us-west4-a exportACCELERATOR_TYPE=v5litepod-16 exportRUNTIME_VERSION=v2-alpha-tpuv5-lite exportSERVICE_ACCOUNT=your-service-account exportQUEUED_RESOURCE_ID=your-queued-resource-id
Environment variable descriptions
Variable Description PROJECT_IDYour Google Cloud project ID. Use an existing project or create a new one. TPU_NAMEThe name of the TPU. ZONEThe zone in which to create the TPU VM. For more information about supported zones, see TPU regions and zones. ACCELERATOR_TYPEThe accelerator type specifies the version and size of the Cloud TPU you want to create. For more information about supported accelerator types for each TPU version, see TPU versions. RUNTIME_VERSIONThe Cloud TPU software version. SERVICE_ACCOUNTThe email address for your service account. You can find it by going to the Service Accounts page in the Google Cloud console. For example:
tpu-service-account@PROJECT_ID.iam.gserviceaccount.comQUEUED_RESOURCE_IDThe user-assigned text ID of the queued resource request. -
gcloudcomputetpusqueued-resourcescreate${QUEUED_RESOURCE_ID}\ --node-id=${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --accelerator-type=${ACCELERATOR_TYPE}\ --runtime-version=${RUNTIME_VERSION}\ --service-account=${SERVICE_ACCOUNT}You will be able to SSH to your TPU VM once your QueuedResource is in the
ACTIVEstate:gcloudcomputetpusqueued-resourcesdescribe${QUEUED_RESOURCE_ID}\ --project=${PROJECT_ID}\ --zone=${ZONE}When the queued resource is in the
ACTIVEstate, the output will be similar to the following:state:ACTIVE Install PyTorch/XLA dependencies
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command=' sudoapt-getupdate-y sudoapt-getinstalllibomp5-y pip3installmklmkl-include pip3installtf-nightlytb-nightlytbp-nightly pip3installnumpy sudoapt-getinstalllibopenblas-dev-y pipinstalltorch==PYTORCH_VERSIONtorchvisiontorch_xla[tpu]==PYTORCH_VERSION-fhttps://storage.googleapis.com/libtpu-releases/index.html-fhttps://storage.googleapis.com/libtpu-wheels/index.html pipinstalljax==0.4.38jaxlib==0.4.38-ihttps://us-python.pkg.dev/ml-oss-artifacts-published/jax/simple/
Replace
PYTORCH_VERSIONwith the version of PyTorch you want to use.PYTORCH_VERSIONis used to specify the same version for PyTorch/XLA. 2.6.0 is recommended.For more information about versions of PyTorch and PyTorch/XLA, see PyTorch - Get Started and PyTorch/XLA releases.
For more information on installing PyTorch/XLA, see PyTorch/XLA installation.
Download HuggingFace repository and install requirements.
gcloudcomputetpustpu-vmssh${TPU_NAME}\ --project=${PROJECT_ID}\ --zone=${ZONE}\ --worker=all\ --command=" git clone https://github.com/suexu1025/transformers.git vittransformers; \ cd vittransformers; \ pip3 install .; \ pip3 install datasets; \ wget https://github.com/pytorch/xla/blob/master/scripts/capture_profile.py"
Train the model
gcloudcomputetpustpu-vmssh${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--worker=all\
--command='
export PJRT_DEVICE=TPU
export PT_XLA_DEBUG=0
export USE_TORCH=ON
export TF_CPP_MIN_LOG_LEVEL=0
export XLA_USE_BF16=1
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
export TPU_LIBRARY_PATH=$HOME/.local/lib/python3.10/site-packages/libtpu/libtpu.so
cd vittransformers
python3 -u examples/pytorch/xla_spawn.py --num_cores 4 examples/pytorch/image-pretraining/run_mae.py --dataset_name=cifar10 \
--remove_unused_columns=False \
--label_names=pixel_values \
--mask_ratio=0.75 \
--norm_pix_loss=True \
--do_train=true \
--do_eval=true \
--base_learning_rate=1.5e-4 \
--lr_scheduler_type=cosine \
--weight_decay=0.05 \
--num_train_epochs=3 \
--warmup_ratio=0.05 \
--per_device_train_batch_size=8 \
--per_device_eval_batch_size=8 \
--logging_strategy=steps \
--logging_steps=30 \
--evaluation_strategy=epoch \
--save_strategy=epoch \
--load_best_model_at_end=True \
--save_total_limit=3 \
--seed=1337 \
--output_dir=MAE \
--overwrite_output_dir=true \
--logging_dir=./tensorboard-metrics \
--tpu_metrics_debug=true'
Delete the TPU and queued resource
Delete your TPU and queued resource at the end of your session.
gcloudcomputetpustpu-vmdelete${TPU_NAME}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
gcloudcomputetpusqueued-resourcesdelete${QUEUED_RESOURCE_ID}\
--project=${PROJECT_ID}\
--zone=${ZONE}\
--quiet
Benchmark result
The following table shows the benchmark throughputs for different accelerator types.