Google Cloud Ai Platform V1 Client - Class Encoding (1.42.0)

Reference documentation and code samples for the Google Cloud Ai Platform V1 Client class Encoding.

Defines how a feature is encoded. Defaults to IDENTITY.

Protobuf type google.cloud.aiplatform.v1.ExplanationMetadata.InputMetadata.Encoding

Namespace

Google \ Cloud \ AIPlatform \ V1 \ ExplanationMetadata \ InputMetadata

Methods

static::name

Parameter
Name Description
value mixed

static::value

Parameter
Name Description
name mixed

Constants

ENCODING_UNSPECIFIED

Value: 0

Default value. This is the same as IDENTITY.

Generated from protobuf enum ENCODING_UNSPECIFIED = 0;

IDENTITY

Value: 1

The tensor represents one feature.

Generated from protobuf enum IDENTITY = 1;

BAG_OF_FEATURES

Value: 2

The tensor represents a bag of features where each index maps to a feature.

InputMetadata.index_feature_mapping must be provided for this encoding. For example:

input = [27, 6.0, 150]
index_feature_mapping = ["age", "height", "weight"]

Generated from protobuf enum BAG_OF_FEATURES = 2;

BAG_OF_FEATURES_SPARSE

Value: 3

The tensor represents a bag of features where each index maps to a feature. Zero values in the tensor indicates feature being non-existent.

InputMetadata.index_feature_mapping must be provided for this encoding. For example:

input = [2, 0, 5, 0, 1]
index_feature_mapping = ["a", "b", "c", "d", "e"]

Generated from protobuf enum BAG_OF_FEATURES_SPARSE = 3;

INDICATOR

Value: 4

The tensor is a list of binaries representing whether a feature exists or not (1 indicates existence).

InputMetadata.index_feature_mapping must be provided for this encoding. For example:

input = [1, 0, 1, 0, 1]
index_feature_mapping = ["a", "b", "c", "d", "e"]

Generated from protobuf enum INDICATOR = 4;

COMBINED_EMBEDDING

Value: 5

The tensor is encoded into a 1-dimensional array represented by an encoded tensor.

InputMetadata.encoded_tensor_name must be provided for this encoding. For example:

input = ["This", "is", "a", "test", "."]
encoded = [0.1, 0.2, 0.3, 0.4, 0.5]

Generated from protobuf enum COMBINED_EMBEDDING = 5;

CONCAT_EMBEDDING

Value: 6

Select this encoding when the input tensor is encoded into a 2-dimensional array represented by an encoded tensor.

InputMetadata.encoded_tensor_name must be provided for this encoding. The first dimension of the encoded tensor's shape is the same as the input tensor's shape. For example:

input = ["This", "is", "a", "test", "."]
encoded = [[0.1, 0.2, 0.3, 0.4, 0.5],
 [0.2, 0.1, 0.4, 0.3, 0.5],
 [0.5, 0.1, 0.3, 0.5, 0.4],
 [0.5, 0.3, 0.1, 0.2, 0.4],
 [0.4, 0.3, 0.2, 0.5, 0.1]]

Generated from protobuf enum CONCAT_EMBEDDING = 6;

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年11月08日 UTC.