dlib C++ Library - dnn_yolo_train_ex.cpp

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
 This is an example illustrating the use of the deep learning tools from the dlib C++
 Library. I'm assuming you have already read the dnn_introduction_ex.cpp, the
 dnn_introduction2_ex.cpp and the dnn_introduction3_ex.cpp examples. In this example
 program we are going to show how one can train a YOLO detector. In particular, we will train
 the YOLOv3 model like the one introduced in this paper:
 "YOLOv3: An Incremental Improvement" by Joseph Redmon and Ali Farhadi.
 This example program will work with any imglab dataset, such as:
 - faces: http://dlib.net/files/data/dlib_face_detection_dataset-2016年09月30日.tar.gz
 - vehicles: http://dlib.net/files/data/dlib_rear_end_vehicles_v1.tar
 Just uncompress the dataset and give the directory containing the training.xml and testing.xml
 files as an argument to this program.
*/
#include <dlib/cmd_line_parser.h>
#include <dlib/data_io.h>
#include <dlib/dnn.h>
#include <dlib/gui_widgets.h>
#include <dlib/image_io.h>
#include <tools/imglab/src/metadata_editor.h>
using namespace std;
using namespace dlib;
// In the darknet namespace we define:
// - the network architecture: DarkNet53 backbone and detection head for YOLO.
// - a helper function to setup the detector: change the number of classes, etc.
namespace darknet
{
 // backbone tags
 template <typename SUBNET> using btag8 = add_tag_layer<8008, SUBNET>;
 template <typename SUBNET> using btag16 = add_tag_layer<8016, SUBNET>;
 template <typename SUBNET> using bskip8 = add_skip_layer<btag8, SUBNET>;
 template <typename SUBNET> using bskip16 = add_skip_layer<btag16, SUBNET>;
 // neck tags
 template <typename SUBNET> using ntag8 = add_tag_layer<6008, SUBNET>;
 template <typename SUBNET> using ntag16 = add_tag_layer<6016, SUBNET>;
 template <typename SUBNET> using ntag32 = add_tag_layer<6032, SUBNET>;
 template <typename SUBNET> using nskip8 = add_skip_layer<ntag8, SUBNET>;
 template <typename SUBNET> using nskip16 = add_skip_layer<ntag16, SUBNET>;
 template <typename SUBNET> using nskip32 = add_skip_layer<ntag32, SUBNET>;
 // head tags
 template <typename SUBNET> using htag8 = add_tag_layer<7008, SUBNET>;
 template <typename SUBNET> using htag16 = add_tag_layer<7016, SUBNET>;
 template <typename SUBNET> using htag32 = add_tag_layer<7032, SUBNET>;
 template <typename SUBNET> using hskip8 = add_skip_layer<htag8, SUBNET>;
 template <typename SUBNET> using hskip16 = add_skip_layer<htag16, SUBNET>;
 // yolo tags
 template <typename SUBNET> using ytag8 = add_tag_layer<4008, SUBNET>;
 template <typename SUBNET> using ytag16 = add_tag_layer<4016, SUBNET>;
 template <typename SUBNET> using ytag32 = add_tag_layer<4032, SUBNET>;
 template <template <typename> class ACT, template <typename> class BN>
 struct def
 {
 template <long nf, long ks, int s, typename SUBNET>
 using conblock = ACT<BN<add_layer<con_<nf, ks, ks, s, s, ks / 2, ks / 2>, SUBNET>>>;
 template <long nf, typename SUBNET>
 using residual = add_prev1<conblock<nf, 3, 1, conblock<nf / 2, 1, 1, tag1<SUBNET>>>>;
 template <long nf, long factor, typename SUBNET>
 using conblock5 = conblock<nf, 1, 1,
 conblock<nf * factor, 3, 1,
 conblock<nf, 1, 1,
 conblock<nf * factor, 3, 1,
 conblock<nf, 1, 1, SUBNET>>>>>;
 template <typename SUBNET> using res_64 = residual<64, SUBNET>;
 template <typename SUBNET> using res_128 = residual<128, SUBNET>;
 template <typename SUBNET> using res_256 = residual<256, SUBNET>;
 template <typename SUBNET> using res_512 = residual<512, SUBNET>;
 template <typename SUBNET> using res_1024 = residual<1024, SUBNET>;
 template <typename INPUT>
 using backbone53 = repeat<4, res_1024, conblock<1024, 3, 2,
 btag16<repeat<8, res_512, conblock<512, 3, 2,
 btag8<repeat<8, res_256, conblock<256, 3, 2,
 repeat<2, res_128, conblock<128, 3, 2,
 res_64< conblock<64, 3, 2,
 conblock<32, 3, 1,
 INPUT>>>>>>>>>>>>>;
 // This is the layer that will be passed to the loss layer to get the detections from the network.
 // The main thing to pay attention to when defining the YOLO output layer is that it should be
 // a tag layer, followed by a sigmoid layer and a 1x1 convolution. The tag layer should be unique
 // in the whole network definition, as the loss layer will use it to get the outputs. The number of
 // filters in the convolutional layer should be (1 + 4 + num_classes) * num_anchors at that output.
 // The 1 corresponds to the objectness in the loss layer and the 4 to the bounding box coordinates.
 template <long num_classes, long nf, template <typename> class YTAG, template <typename> class NTAG, typename SUBNET>
 using yolo = YTAG<sig<con<3 * (num_classes + 5), 1, 1, 1, 1,
 conblock<nf, 3, 1,
 NTAG<conblock5<nf / 2, 2,
 SUBNET>>>>>>;
 template <long num_classes>
 using yolov3 = yolo<num_classes, 256, ytag8, ntag8,
 concat2<htag8, btag8,
 htag8<upsample<2, conblock<128, 1, 1,
 nskip16<
 yolo<num_classes, 512, ytag16, ntag16,
 concat2<htag16, btag16,
 htag16<upsample<2, conblock<256, 1, 1,
 nskip32<
 yolo<num_classes, 1024, ytag32, ntag32,
 backbone53<input_rgb_image>>>>>>>>>>>>>>;
 };
 using yolov3_train_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, bn_con>::yolov3<80>>;
 using yolov3_infer_type = loss_yolo<ytag8, ytag16, ytag32, def<leaky_relu, affine>::yolov3<80>>;
 void setup_detector(yolov3_train_type& net, const yolo_options& options)
 {
 // remove bias from bn inputs
 disable_duplicative_biases(net);
 // setup leaky relus
 visit_computational_layers(net, [](leaky_relu_& l) { l = leaky_relu_(0.1); });
 // enlarge the batch normalization stats window
 set_all_bn_running_stats_window_sizes(net, 1000);
 // set the number of filters for detection layers (they are located after the tag and sig layers)
 const long nfo1 = options.anchors.at(tag_id<ytag8>::id).size() * (options.labels.size() + 5);
 const long nfo2 = options.anchors.at(tag_id<ytag16>::id).size() * (options.labels.size() + 5);
 const long nfo3 = options.anchors.at(tag_id<ytag32>::id).size() * (options.labels.size() + 5);
 layer<ytag8, 2>(net).layer_details().set_num_filters(nfo1);
 layer<ytag16, 2>(net).layer_details().set_num_filters(nfo2);
 layer<ytag32, 2>(net).layer_details().set_num_filters(nfo3);
 }
}
// In this example, YOLO expects square images, and we choose to transform them by letterboxing them.
rectangle_transform preprocess_image(const matrix<rgb_pixel>& image, matrix<rgb_pixel>& output)
{
 return rectangle_transform(inv(letterbox_image(image, output)));
}
// YOLO outputs the bounding boxes in the coordinate system of the input (letterboxed) image, so we need to convert them
// back to the original image.
void postprocess_detections(const rectangle_transform& tform, std::vector<yolo_rect>& detections)
{
 for (auto& d : detections)
 d.rect = tform(d.rect);
}
int main(const int argc, const char** argv)
try
{
 command_line_parser parser;
 parser.add_option("size", "image size for training (default: 416)", 1);
 parser.add_option("learning-rate", "initial learning rate (default: 0.001)", 1);
 parser.add_option("batch-size", "mini batch size (default: 8)", 1);
 parser.add_option("burnin", "learning rate burnin steps (default: 1000)", 1);
 parser.add_option("patience", "number of steps without progress (default: 10000)", 1);
 parser.add_option("workers", "number of worker threads to load data (default: 4)", 1);
 parser.add_option("gpus", "number of GPUs to run the training on (default: 1)", 1);
 parser.add_option("test", "test the detector with a threshold (default: 0.01)", 1);
 parser.add_option("visualize", "visualize data augmentation instead of training");
 parser.add_option("map", "compute the mean average precision");
 parser.add_option("anchors", "Do nothing but compute <arg1> anchor boxes using K-Means and print their shapes.", 1);
 parser.set_group_name("Help Options");
 parser.add_option("h", "alias of --help");
 parser.add_option("help", "display this message and exit");
 parser.parse(argc, argv);
 if (parser.number_of_arguments() == 0 || parser.option("h") || parser.option("help"))
 {
 parser.print_options();
 cout << "Give the path to a folder containing the training.xml file." << endl;
 return 0;
 }
 const double learning_rate = get_option(parser, "learning-rate", 0.001);
 const size_t patience = get_option(parser, "patience", 10000);
 const size_t batch_size = get_option(parser, "batch-size", 8);
 const size_t burnin = get_option(parser, "burnin", 1000);
 const size_t image_size = get_option(parser, "size", 416);
 const size_t num_workers = get_option(parser, "workers", 4);
 const size_t num_gpus = get_option(parser, "gpus", 1);
 const string data_directory = parser[0];
 const string sync_file_name = "yolov3_sync";
 image_dataset_metadata::dataset dataset;
 image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/training.xml");
 cout << "# images: " << dataset.images.size() << endl;
 std::map<string, size_t> labels;
 size_t num_objects = 0;
 for (const auto& im : dataset.images)
 {
 for (const auto& b : im.boxes)
 {
 labels[b.label]++;
 ++num_objects;
 }
 }
 cout << "# labels: " << labels.size() << endl;
 yolo_options options;
 color_mapper string_to_color;
 for (const auto& label : labels)
 {
 cout << " - " << label.first << ": " << label.second;
 cout << " (" << (100.0*label.second)/num_objects << "%)\n";
 options.labels.push_back(label.first);
 string_to_color(label.first);
 }
 // If the default anchor boxes don't fit your data well you should recompute them.
 // Here's a simple way to do it using K-Means clustering. Note that the approach
 // shown below is suboptimal, since it doesn't group the bounding boxes by size.
 // Grouping the bounding boxes by size and computing the K-Means on each group
 // would make more sense, since each stride of the network is meant to output
 // boxes at a particular size, but that is very specific to the network architecture
 // and the dataset itself.
 if (parser.option("anchors"))
 {
 const auto num_clusers = std::stoul(parser.option("anchors").argument());
 std::vector<dpoint> samples;
 // First we need to rescale the bounding boxes to match the image size at training time.
 for (const auto& image_info : dataset.images)
 {
 const auto scale = image_size / std::max<double>(image_info.width, image_info.height);
 for (const auto& box : image_info.boxes)
 {
 dpoint sample(box.rect.width(), box.rect.height());
 samples.push_back(sample*scale);
 }
 }
 // Now we can compute K-Means clustering
 randomize_samples(samples);
 cout << "Computing anchors for " << samples.size() << " samples" << endl;
 std::vector<dpoint> anchors;
 pick_initial_centers(num_clusers, anchors, samples);
 find_clusters_using_kmeans(samples, anchors);
 std::sort(anchors.begin(), anchors.end(), [](const dpoint& a, const dpoint& b){ return prod(a) < prod(b); });
 for (const dpoint& c : anchors)
 cout << round(c(0)) << 'x' << round(c(1)) << endl;
 // And check the average IoU of the newly computed anchor boxes and the training samples.
 double average_iou = 0;
 for (const dpoint& s : samples)
 {
 drectangle sample = centered_drect(dpoint(0, 0), s.x(), s.y());
 double best_iou = 0;
 for (const dpoint& a : anchors)
 {
 drectangle anchor = centered_drect(dpoint(0, 0), a.x(), a.y());
 best_iou = std::max(best_iou, box_intersection_over_union(sample, anchor));
 }
 average_iou += best_iou;
 }
 cout << "Average IoU: " << average_iou / samples.size() << endl;
 return EXIT_SUCCESS;
 }
 // When computing the objectness loss in YOLO, predictions that do not have an IoU
 // with any ground truth box of at least options.iou_ignore_threshold, will be
 // treated as not capable of detecting an object, an therefore incur loss.
 // Similarly, predictions above this threshold are considered correct predictions
 // by the loss. Typical settings for this threshold are in the range 0.5 to 0.7.
 options.iou_ignore_threshold = 0.7;
 // By setting this to a value < 1, we are telling the model to update all the predictions
 // as long as the anchor box has an IoU > 0.2 with a ground truth.
 options.iou_anchor_threshold = 0.2;
 // These are the anchors computed on COCO dataset, presented in the YOLOv3 paper.
 options.add_anchors<darknet::ytag8>({{10, 13}, {16, 30}, {33, 23}});
 options.add_anchors<darknet::ytag16>({{30, 61}, {62, 45}, {59, 119}});
 options.add_anchors<darknet::ytag32>({{116, 90}, {156, 198}, {373, 326}});
 darknet::yolov3_train_type net(options);
 darknet::setup_detector(net, options);
 // The training process can be unstable at the beginning. For this reason, we exponentially
 // increase the learning rate during the first burnin steps.
 const matrix<double> learning_rate_schedule = learning_rate * pow(linspace(1e-12, 1, burnin), 4);
 // In case we have several GPUs, we can tell the dnn_trainer to make use of them.
 std::vector<int> gpus(num_gpus);
 iota(gpus.begin(), gpus.end(), 0);
 // We initialize the trainer here, as it will be used in several contexts, depending on the
 // arguments passed the the program.
 dnn_trainer<darknet::yolov3_train_type> trainer(net, sgd(0.0005, 0.9), gpus);
 trainer.be_verbose();
 trainer.set_mini_batch_size(batch_size);
 trainer.set_learning_rate_schedule(learning_rate_schedule);
 trainer.set_synchronization_file(sync_file_name, chrono::minutes(15));
 cout << trainer;
 // If the training has started and a synchronization file has already been saved to disk,
 // we can re-run this program with the --test option and a confidence threshold to see
 // how the training is going.
 if (parser.option("test"))
 {
 if (!file_exists(sync_file_name))
 {
 cout << "Could not find file " << sync_file_name << endl;
 return EXIT_FAILURE;
 }
 const double threshold = get_option(parser, "test", 0.01);
 image_window win;
 matrix<rgb_pixel> image, resized(image_size, image_size);
 for (const auto& im : dataset.images)
 {
 win.clear_overlay();
 load_image(image, data_directory + "/" + im.filename);
 win.set_title(im.filename);
 win.set_image(image);
 const auto tform = preprocess_image(image, resized);
 auto detections = net.process(resized, threshold);
 postprocess_detections(tform, detections);
 cout << "# detections: " << detections.size() << endl;
 for (const auto& det : detections)
 {
 win.add_overlay(det.rect, string_to_color(det.label), det.label);
 cout << det.label << ": " << det.rect << " " << det.detection_confidence << endl;
 }
 cin.get();
 }
 return EXIT_SUCCESS;
 }
 // If the training has started and a synchronization file has already been saved to disk,
 // we can re-run this program with the --map option to compute the mean average precision
 // on the test set.
 if (parser.option("map"))
 {
 image_dataset_metadata::dataset dataset;
 image_dataset_metadata::load_image_dataset_metadata(dataset, data_directory + "/testing.xml");
 if (!file_exists(sync_file_name))
 {
 cout << "Could not find file " << sync_file_name << endl;
 return EXIT_FAILURE;
 }
 matrix<rgb_pixel> image, resized(image_size, image_size);
 std::map<std::string, std::vector<std::pair<double, bool>>> hits;
 std::map<std::string, unsigned long> missing;
 for (const auto& label : options.labels)
 {
 hits[label] = std::vector<std::pair<double, bool>>();
 missing[label] = 0;
 }
 cout << "computing mean average precision for " << dataset.images.size() << " images..." << endl;
 for (size_t i = 0; i < dataset.images.size(); ++i)
 {
 const auto& im = dataset.images[i];
 load_image(image, data_directory + "/" + im.filename);
 const auto tform = preprocess_image(image, resized);
 auto dets = net.process(resized, 0.005);
 postprocess_detections(tform, dets);
 std::vector<bool> used(dets.size(), false);
 // true positives: truths matched by detections
 for (size_t t = 0; t < im.boxes.size(); ++t)
 {
 bool found_match = false;
 for (size_t d = 0; d < dets.size(); ++d)
 {
 if (used[d])
 continue;
 if (im.boxes[t].label == dets[d].label &&
 box_intersection_over_union(drectangle(im.boxes[t].rect), dets[d].rect) > 0.5)
 {
 used[d] = true;
 found_match = true;
 hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, true);
 break;
 }
 }
 // false negatives: truths not matched
 if (!found_match)
 missing.at(im.boxes[t].label)++;
 }
 // false positives: detections not matched
 for (size_t d = 0; d < dets.size(); ++d)
 {
 if (!used[d])
 hits.at(dets[d].label).emplace_back(dets[d].detection_confidence, false);
 }
 cout << "progress: " << i << '/' << dataset.images.size() << "\t\t\t\r" << flush;
 }
 double map = 0;
 for (auto& item : hits)
 {
 std::sort(item.second.rbegin(), item.second.rend());
 const double ap = average_precision(item.second, missing[item.first]);
 cout << rpad(item.first + ": ", 16, " ") << ap * 100 << '%' << endl;
 map += ap;
 }
 cout << rpad(string("mAP: "), 16, " ") << map / hits.size() * 100 << '%' << endl;
 return EXIT_SUCCESS;
 }
 // Create some data loaders which will load the data, and perform some data augmentation.
 dlib::pipe<std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>>> train_data(1000);
 const auto loader = [&dataset, &data_directory, &train_data, &image_size](time_t seed)
 {
 dlib::rand rnd(time(nullptr) + seed);
 matrix<rgb_pixel> image, rotated;
 std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
 random_cropper cropper;
 cropper.set_seed(time(nullptr) + seed);
 cropper.set_chip_dims(image_size, image_size);
 cropper.set_max_object_size(0.9);
 cropper.set_min_object_size(10, 10);
 cropper.set_max_rotation_degrees(10);
 cropper.set_translate_amount(0.5);
 cropper.set_randomly_flip(true);
 cropper.set_background_crops_fraction(0);
 cropper.set_min_object_coverage(0.8);
 while (train_data.is_enabled())
 {
 const auto idx = rnd.get_random_32bit_number() % dataset.images.size();
 load_image(image, data_directory + "/" + dataset.images[idx].filename);
 for (const auto& box : dataset.images[idx].boxes)
 temp.second.emplace_back(box.rect, 1, box.label);
 // We alternate between augmenting the full image and random cropping
 if (rnd.get_random_double() > 0.5)
 {
 rectangle_transform tform = rotate_image(
 image,
 rotated,
 rnd.get_double_in_range(-5 * pi / 180, 5 * pi / 180),
 interpolate_bilinear());
 for (auto& box : temp.second)
 box.rect = tform(box.rect);
 temp.first.set_size(image_size, image_size);
 tform = letterbox_image(rotated, temp.first);
 for (auto& box : temp.second)
 box.rect = tform(box.rect);
 if (rnd.get_random_double() > 0.5)
 {
 tform = flip_image_left_right(temp.first);
 for (auto& box : temp.second)
 box.rect = tform(box.rect);
 }
 }
 else
 {
 std::vector<yolo_rect> boxes = temp.second;
 cropper(image, boxes, temp.first, temp.second);
 }
 disturb_colors(temp.first, rnd);
 train_data.enqueue(temp);
 }
 };
 std::vector<thread> data_loaders;
 for (size_t i = 0; i < num_workers; ++i)
 data_loaders.emplace_back([loader, i]() { loader(i + 1); });
 // It is always a good idea to visualize the training samples. By passing the --visualize
 // flag, we can see the training samples that will be fed to the dnn_trainer.
 if (parser.option("visualize"))
 {
 image_window win;
 while (true)
 {
 std::pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
 train_data.dequeue(temp);
 win.clear_overlay();
 win.set_image(temp.first);
 for (const auto& r : temp.second)
 {
 auto color = string_to_color(r.label);
 // make semi-transparent and cross-out the ignored boxes
 if (r.ignore)
 {
 color.alpha = 128;
 win.add_overlay(r.rect.tl_corner(), r.rect.br_corner(), color);
 win.add_overlay(r.rect.tr_corner(), r.rect.bl_corner(), color);
 }
 win.add_overlay(r.rect, color, r.label);
 }
 cout << "Press enter to visualize the next training sample.";
 cin.get();
 }
 }
 std::vector<matrix<rgb_pixel>> images;
 std::vector<std::vector<yolo_rect>> bboxes;
 // The main training loop, that we will reuse for the warmup and the rest of the training.
 const auto train = [&images, &bboxes, &train_data, &trainer]()
 {
 images.clear();
 bboxes.clear();
 pair<matrix<rgb_pixel>, std::vector<yolo_rect>> temp;
 while (images.size() < trainer.get_mini_batch_size())
 {
 train_data.dequeue(temp);
 images.push_back(move(temp.first));
 bboxes.push_back(move(temp.second));
 }
 trainer.train_one_step(images, bboxes);
 };
 cout << "training started with " << burnin << " burn-in steps" << endl;
 while (trainer.get_train_one_step_calls() < burnin)
 train();
 cout << "burn-in finished" << endl;
 trainer.get_net();
 trainer.set_learning_rate(learning_rate);
 trainer.set_min_learning_rate(learning_rate * 1e-3);
 trainer.set_learning_rate_shrink_factor(0.1);
 trainer.set_iterations_without_progress_threshold(patience);
 cout << trainer << endl;
 while (trainer.get_learning_rate() >= trainer.get_min_learning_rate())
 train();
 cout << "training done" << endl;
 trainer.get_net();
 train_data.disable();
 for (auto& worker : data_loaders)
 worker.join();
 // Before saving the network, we can assign it to the "infer" version, so that it won't
 // perform batch normalization with batch sizes larger than one, as usual. Moreover,
 // we can also fuse the batch normalization (affine) layers into the convolutional
 // layers, so that the network can run a bit faster. Notice that, after fusing the
 // layers, the network can no longer be used for training, so you should save the
 // yolov3_train_type network if you plan to further train or finetune the network.
 darknet::yolov3_infer_type inet(net);
 fuse_layers(inet);
 serialize("yolov3.dnn") << inet;
 return EXIT_SUCCESS;
}
catch (const std::exception& e)
{
 cout << e.what() << endl;
 return EXIT_FAILURE;
}

AltStyle によって変換されたページ (->オリジナル) /