dlib C++ Library - dnn_introduction2_ex.cpp

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
 This is an example illustrating the use of the deep learning tools from the
 dlib C++ Library. I'm assuming you have already read the dnn_introduction_ex.cpp 
 example. So in this example program I'm going to go over a number of more
 advanced parts of the API, including:
 - Using multiple GPUs
 - Training on large datasets that don't fit in memory 
 - Defining large networks
 - Accessing and configuring layers in a network
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// Let's start by showing how you can conveniently define large and complex
// networks. The most important tool for doing this are C++'s alias templates.
// These let us define new layer types that are combinations of a bunch of other
// layers. These will form the building blocks for more complex networks.
// So let's begin by defining the building block of a residual network (see
// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
// and Sun). We are going to decompose the residual block into a few alias
// statements. First, we define the core block.
// Here we have parameterized the "block" layer on a BN layer (nominally some
// kind of batch normalization), the number of filter outputs N, and the stride
// the block operates at.
template <
 int N, 
 template <typename> class BN, 
 int stride, 
 typename SUBNET
 > 
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
// Next, we need to define the skip layer mechanism used in the residual network
// paper. They create their blocks by adding the input tensor to the output of
// each block. So we define an alias statement that takes a block and wraps it
// with this skip/add structure.
// Note the tag layer. This layer doesn't do any computation. It exists solely
// so other layers can refer to it. In this case, the add_prev1 layer looks for
// the tag1 layer and will take the tag1 output and add it to the input of the
// add_prev1 layer. This combination allows us to implement skip and residual
// style networks. We have also set the block stride to 1 in this statement.
// The significance of that is explained next.
template <
 template <int,template<typename>class,int,typename> class block, 
 int N, 
 template<typename>class BN, 
 typename SUBNET
 >
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
// Some residual blocks do downsampling. They do this by using a stride of 2
// instead of 1. However, when downsampling we need to also take care to
// downsample the part of the network that adds the original input to the output
// or the sizes won't make sense (the network will still run, but the results
// aren't as good). So here we define a downsampling version of residual. In
// it, we make use of the skip1 layer. This layer simply outputs whatever is
// output by the tag1 layer. Therefore, the skip1 layer (there are also skip2,
// skip3, etc. in dlib) allows you to create branching network structures.
// residual_down creates a network structure like this:
/*
 input from SUBNET
 / \
 / \
 block downsample(using avg_pool)
 \ /
 \ /
 add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
 |
 output
*/
template <
 template <int,template<typename>class,int,typename> class block, 
 int N, 
 template<typename>class BN, 
 typename SUBNET
 >
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
// Now we can define 4 different residual blocks we will use in this example.
// The first two are non-downsampling residual blocks while the last two
// downsample. Also, res and res_down use batch normalization while ares and
// ares_down have had the batch normalization replaced with simple affine
// layers. We will use the affine version of the layers when testing our
// networks.
template <typename SUBNET> using res = relu<residual<block,8,bn_con,SUBNET>>;
template <typename SUBNET> using ares = relu<residual<block,8,affine,SUBNET>>;
template <typename SUBNET> using res_down = relu<residual_down<block,8,bn_con,SUBNET>>;
template <typename SUBNET> using ares_down = relu<residual_down<block,8,affine,SUBNET>>;
// Now that we have these convenient aliases, we can define a residual network
// without a lot of typing. Note the use of a repeat layer. This special layer
// type allows us to type repeat<9,res,SUBNET> instead of
// res<res<res<res<res<res<res<res<res<SUBNET>>>>>>>>>. It will also prevent
// the compiler from complaining about super deep template nesting when creating
// large networks.
const unsigned long number_of_classes = 10;
using net_type = loss_multiclass_log<fc<number_of_classes,
 avg_pool_everything<
 res<res<res<res_down<
 repeat<9,res, // repeat this layer 9 times
 res_down<
 res<
 input<matrix<unsigned char>>
 >>>>>>>>>>;
// And finally, let's define a residual network building block that uses
// parametric ReLU units instead of regular ReLU.
template <typename SUBNET> 
using pres = prelu<add_prev1<bn_con<con<8,3,3,1,1,prelu<bn_con<con<8,3,3,1,1,tag1<SUBNET>>>>>>>>;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
 if (argc != 2)
 {
 cout << "This example needs the MNIST dataset to run!" << endl;
 cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
 cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
 cout << "put them in a folder. Then give that folder as input to this program." << endl;
 return 1;
 }
 std::vector<matrix<unsigned char>> training_images;
 std::vector<unsigned long> training_labels;
 std::vector<matrix<unsigned char>> testing_images;
 std::vector<unsigned long> testing_labels;
 load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
 // dlib uses cuDNN under the covers. One of the features of cuDNN is the
 // option to use slower methods that use less RAM or faster methods that use
 // a lot of RAM. If you find that you run out of RAM on your graphics card
 // then you can call this function and we will request the slower but more
 // RAM frugal cuDNN algorithms.
 set_dnn_prefer_smallest_algorithms();
 // Create a network as defined above. This network will produce 10 outputs
 // because that's how we defined net_type. However, fc layers can have the
 // number of outputs they produce changed at runtime. 
 net_type net;
 // So if you wanted to use the same network but override the number of
 // outputs at runtime you can do so like this:
 net_type net2(num_fc_outputs(15));
 // Now, let's imagine we wanted to replace some of the relu layers with
 // prelu layers. We might do it like this:
 using net_type2 = loss_multiclass_log<fc<number_of_classes,
 avg_pool_everything<
 pres<res<res<res_down< // 2 prelu layers here
 tag4<repeat<9,pres, // 9 groups, each containing 2 prelu layers 
 res_down<
 res<
 input<matrix<unsigned char>>
 >>>>>>>>>>>;
 // prelu layers have a floating point parameter. If you want to set it to
 // something other than its default value you can do so like this:
 net_type2 pnet(prelu_(0.2), 
 prelu_(0.25),
 repeat_group(prelu_(0.3),prelu_(0.4)) // Initialize all the prelu instances in the repeat 
 // layer. repeat_group() is needed to group the 
 // things that are part of repeat's block.
 );
 // As you can see, a network will greedily assign things given to its
 // constructor to the layers inside itself. The assignment is done in the
 // order the layers are defined, but it will skip layers where the
 // assignment doesn't make sense. 
 // Now let's print the details of the pnet to the screen and inspect it.
 cout << "The pnet has " << pnet.num_layers << " layers in it." << endl;
 cout << pnet << endl;
 // These print statements will output this (I've truncated it since it's
 // long, but you get the idea):
 /*
 The pnet has 131 layers in it.
 layer<0> loss_multiclass_log
 layer<1> fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<2> avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
 layer<3> prelu (initial_param_value=0.2)
 layer<4> add_prev1
 layer<5> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 layer<6> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<7> prelu (initial_param_value=0.25)
 layer<8> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 layer<9> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<10> tag1
 ...
 layer<34> relu
 layer<35> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 layer<36> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<37> tag1
 layer<38> tag4
 layer<39> prelu (initial_param_value=0.3)
 layer<40> add_prev1
 layer<41> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 ...
 layer<118> relu
 layer<119> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 layer<120> con (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<121> tag1
 layer<122> relu
 layer<123> add_prev1
 layer<124> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 layer<125> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<126> relu
 layer<127> bn_con eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
 layer<128> con (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
 layer<129> tag1
 layer<130> input<matrix>
 */
 // Now that we know the index numbers for each layer, we can access them
 // individually using layer<index>(pnet). For example, to access the output
 // tensor for the first prelu layer we can say:
 layer<3>(pnet).get_output();
 // Or to print the prelu parameter for layer 7 we can say:
 cout << "prelu param: "<< layer<7>(pnet).layer_details().get_initial_param_value() << endl;
 // We can also access layers by their type. This next statement finds the
 // first tag1 layer in pnet, and is therefore equivalent to calling
 // layer<10>(pnet):
 layer<tag1>(pnet);
 // The tag layers don't do anything at all and exist simply so you can tag
 // parts of your network and access them by layer<tag>(). You can also
 // index relative to a tag. So for example, to access the layer immediately
 // after tag4 you can say:
 layer<tag4,1>(pnet); // Equivalent to layer<38+1>(pnet).
 // Or to access the layer 2 layers after tag4:
 layer<tag4,2>(pnet);
 // Tagging is a very useful tool for making complex network structures. For
 // example, the add_prev1 layer is implemented internally by using a call to
 // layer<tag1>().
 // Ok, that's enough talk about defining and inspecting networks. Let's
 // talk about training networks!
 // The dnn_trainer will use SGD by default, but you can tell it to use
 // different solvers like adam with a weight decay of 0.0005 and the given
 // momentum parameters. 
 dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999));
 // Also, if you have multiple graphics cards you can tell the trainer to use
 // them together to make the training faster. For example, replacing the
 // above constructor call with this one would cause it to use GPU cards 0
 // and 1.
 //dnn_trainer<net_type,adam> trainer(net,adam(0.0005, 0.9, 0.999), {0,1});
 trainer.be_verbose();
 // While the trainer is running it keeps an eye on the training error. If
 // it looks like the error hasn't decreased for the last 2000 iterations it
 // will automatically reduce the learning rate by 0.1. You can change these
 // default parameters to some other values by calling these functions. Or
 // disable the automatic shrinking entirely by setting the shrink factor to 1.
 trainer.set_iterations_without_progress_threshold(2000);
 trainer.set_learning_rate_shrink_factor(0.1);
 // The learning rate will start at 1e-3.
 trainer.set_learning_rate(1e-3);
 trainer.set_synchronization_file("mnist_resnet_sync", std::chrono::seconds(100));
 // Now, what if your training dataset is so big it doesn't fit in RAM? You
 // make mini-batches yourself, any way you like, and you send them to the
 // trainer by repeatedly calling trainer.train_one_step(). 
 //
 // For example, the loop below stream MNIST data to out trainer.
 std::vector<matrix<unsigned char>> mini_batch_samples;
 std::vector<unsigned long> mini_batch_labels; 
 dlib::rand rnd(time(0));
 // Loop until the trainer's automatic shrinking has shrunk the learning rate to 1e-6.
 // Given our settings, this means it will stop training after it has shrunk the
 // learning rate 3 times.
 while(trainer.get_learning_rate() >= 1e-6)
 {
 mini_batch_samples.clear();
 mini_batch_labels.clear();
 // make a 128 image mini-batch
 while(mini_batch_samples.size() < 128)
 {
 auto idx = rnd.get_random_32bit_number()%training_images.size();
 mini_batch_samples.push_back(training_images[idx]);
 mini_batch_labels.push_back(training_labels[idx]);
 }
 // Tell the trainer to update the network given this mini-batch
 trainer.train_one_step(mini_batch_samples, mini_batch_labels);
 // You can also feed validation data into the trainer by periodically
 // calling trainer.test_one_step(samples,labels). Unlike train_one_step(),
 // test_one_step() doesn't modify the network, it only computes the testing
 // error which it records internally. This testing error will then be print
 // in the verbose logging and will also determine when the trainer's
 // automatic learning rate shrinking happens. Therefore, test_one_step()
 // can be used to perform automatic early stopping based on held out data. 
 }
 // When you call train_one_step(), the trainer will do its processing in a
 // separate thread. This allows the main thread to work on loading data
 // while the trainer is busy executing the mini-batches in parallel.
 // However, this also means we need to wait for any mini-batches that are
 // still executing to stop before we mess with the net object. Calling
 // get_net() performs the necessary synchronization.
 trainer.get_net();
 net.clean();
 serialize("mnist_res_network.dat") << net;
 // Now we have a trained network. However, it has batch normalization
 // layers in it. As is customary, we should replace these with simple
 // affine layers before we use the network. This can be accomplished by
 // making a network type which is identical to net_type but with the batch
 // normalization layers replaced with affine. For example:
 using test_net_type = loss_multiclass_log<fc<number_of_classes,
 avg_pool_everything<
 ares<ares<ares<ares_down<
 repeat<9,ares,
 ares_down<
 ares<
 input<matrix<unsigned char>>
 >>>>>>>>>>;
 // Then we can simply assign our trained net to our testing net.
 test_net_type tnet = net;
 // Or if you only had a file with your trained network you could deserialize
 // it directly into your testing network. 
 deserialize("mnist_res_network.dat") >> tnet;
 // And finally, we can run the testing network over our data.
 std::vector<unsigned long> predicted_labels = tnet(training_images);
 int num_right = 0;
 int num_wrong = 0;
 for (size_t i = 0; i < training_images.size(); ++i)
 {
 if (predicted_labels[i] == training_labels[i])
 ++num_right;
 else
 ++num_wrong;
 
 }
 cout << "training num_right: " << num_right << endl;
 cout << "training num_wrong: " << num_wrong << endl;
 cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
 predicted_labels = tnet(testing_images);
 num_right = 0;
 num_wrong = 0;
 for (size_t i = 0; i < testing_images.size(); ++i)
 {
 if (predicted_labels[i] == testing_labels[i])
 ++num_right;
 else
 ++num_wrong;
 
 }
 cout << "testing num_right: " << num_right << endl;
 cout << "testing num_wrong: " << num_wrong << endl;
 cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
}
catch(std::exception& e)
{
 cout << e.what() << endl;
}

AltStyle によって変換されたページ (->オリジナル) /