dlib C++ Library - dnn_instance_segmentation_train_ex.cpp

// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
 This example shows how to train a instance segmentation net using the PASCAL VOC2012
 dataset. For an introduction to what segmentation is, see the accompanying header file
 dnn_instance_segmentation_ex.h.
 Instructions how to run the example:
 1. Download the PASCAL VOC2012 data, and untar it somewhere.
 http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
 2. Build the dnn_instance_segmentation_train_ex example program.
 3. Run:
 ./dnn_instance_segmentation_train_ex /path/to/VOC2012
 4. Wait while the network is being trained.
 5. Build the dnn_instance_segmentation_ex example program.
 6. Run:
 ./dnn_instance_segmentation_ex /path/to/VOC2012-or-other-images
 It would be a good idea to become familiar with dlib's DNN tooling before reading this
 example. So you should read dnn_introduction_ex.cpp, dnn_introduction2_ex.cpp,
 and dnn_semantic_segmentation_train_ex.cpp before reading this example program.
*/
#include "dnn_instance_segmentation_ex.h"
#include "pascal_voc_2012.h"
#include <iostream>
#include <dlib/data_io.h>
#include <dlib/image_transforms.h>
#include <dlib/dir_nav.h>
#include <iterator>
#include <thread>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// A single training sample for detection. A mini-batch comprises many of these.
struct det_training_sample
{
 matrix<rgb_pixel> input_image;
 std::vector<dlib::mmod_rect> mmod_rects;
};
// A single training sample for segmentation. A mini-batch comprises many of these.
struct seg_training_sample
{
 matrix<rgb_pixel> input_image;
 matrix<float> label_image; // The ground-truth label of each pixel. (+1 or -1)
};
// ----------------------------------------------------------------------------------------
bool is_instance_pixel(const dlib::rgb_pixel& rgb_label)
{
 if (rgb_label == dlib::rgb_pixel(0, 0, 0))
 return false; // Background
 if (rgb_label == dlib::rgb_pixel(224, 224, 192))
 return false; // The cream-colored `void' label is used in border regions and to mask difficult objects
 return true;
}
// Provide hash function for dlib::rgb_pixel
namespace std {
 template <>
 struct hash<dlib::rgb_pixel>
 {
 std::size_t operator()(const dlib::rgb_pixel& p) const
 {
 return (static_cast<uint32_t>(p.red) << 16)
 | (static_cast<uint32_t>(p.green) << 8)
 | (static_cast<uint32_t>(p.blue));
 }
 };
}
struct truth_instance
{
 dlib::rgb_pixel rgb_label;
 dlib::mmod_rect mmod_rect;
};
std::vector<truth_instance> rgb_label_images_to_truth_instances(
 const dlib::matrix<dlib::rgb_pixel>& instance_label_image,
 const dlib::matrix<dlib::rgb_pixel>& class_label_image
)
{
 std::unordered_map<dlib::rgb_pixel, mmod_rect> result_map;
 DLIB_CASSERT(instance_label_image.nr() == class_label_image.nr());
 DLIB_CASSERT(instance_label_image.nc() == class_label_image.nc());
 const auto nr = instance_label_image.nr();
 const auto nc = instance_label_image.nc();
 for (int r = 0; r < nr; ++r)
 {
 for (int c = 0; c < nc; ++c)
 {
 const auto rgb_instance_label = instance_label_image(r, c);
 if (!is_instance_pixel(rgb_instance_label))
 continue;
 const auto rgb_class_label = class_label_image(r, c);
 const Voc2012class& voc2012_class = find_voc2012_class(rgb_class_label);
 const auto i = result_map.find(rgb_instance_label);
 if (i == result_map.end())
 {
 // Encountered a new instance
 result_map[rgb_instance_label] = rectangle(c, r, c, r);
 result_map[rgb_instance_label].label = voc2012_class.classlabel;
 }
 else
 {
 // Not the first occurrence - update the rect
 auto& rect = i->second.rect;
 if (c < rect.left())
 rect.set_left(c);
 else if (c > rect.right())
 rect.set_right(c);
 if (r > rect.bottom())
 rect.set_bottom(r);
 DLIB_CASSERT(i->second.label == voc2012_class.classlabel);
 }
 }
 }
 std::vector<truth_instance> flat_result;
 flat_result.reserve(result_map.size());
 for (const auto& i : result_map) {
 flat_result.push_back(truth_instance{
 i.first, i.second
 });
 }
 return flat_result;
}
// ----------------------------------------------------------------------------------------
struct truth_image
{
 image_info info;
 std::vector<truth_instance> truth_instances;
};
std::vector<mmod_rect> extract_mmod_rects(
 const std::vector<truth_instance>& truth_instances
)
{
 std::vector<mmod_rect> mmod_rects(truth_instances.size());
 std::transform(
 truth_instances.begin(),
 truth_instances.end(),
 mmod_rects.begin(),
 [](const truth_instance& truth) { return truth.mmod_rect; }
 );
 return mmod_rects;
}
std::vector<std::vector<mmod_rect>> extract_mmod_rect_vectors(
 const std::vector<truth_image>& truth_images
)
{
 std::vector<std::vector<mmod_rect>> mmod_rects(truth_images.size());
 const auto extract_mmod_rects_from_truth_image = [](const truth_image& truth_image)
 {
 return extract_mmod_rects(truth_image.truth_instances);
 };
 std::transform(
 truth_images.begin(),
 truth_images.end(),
 mmod_rects.begin(),
 extract_mmod_rects_from_truth_image
 );
 return mmod_rects;
}
det_bnet_type train_detection_network(
 const std::vector<truth_image>& truth_images,
 unsigned int det_minibatch_size
)
{
 const double initial_learning_rate = 0.1;
 const double weight_decay = 0.0001;
 const double momentum = 0.9;
 const double min_detector_window_overlap_iou = 0.65;
 const int target_size = 70;
 const int min_target_size = 30;
 mmod_options options(
 extract_mmod_rect_vectors(truth_images),
 target_size, min_target_size,
 min_detector_window_overlap_iou
 );
 options.overlaps_ignore = test_box_overlap(0.5, 0.9);
 det_bnet_type det_net(options);
 det_net.subnet().layer_details().set_num_filters(options.detector_windows.size());
 dlib::pipe<det_training_sample> data(200);
 auto f = [&data, &truth_images, target_size, min_target_size](time_t seed)
 {
 dlib::rand rnd(time(0) + seed);
 matrix<rgb_pixel> input_image;
 random_cropper cropper;
 cropper.set_seed(time(0));
 cropper.set_chip_dims(350, 350);
 // Usually you want to give the cropper whatever min sizes you passed to the
 // mmod_options constructor, or very slightly smaller sizes, which is what we do here.
 cropper.set_min_object_size(target_size - 2, min_target_size - 2);
 cropper.set_max_rotation_degrees(2);
 det_training_sample temp;
 while (data.is_enabled())
 {
 // Pick a random input image.
 const auto random_index = rnd.get_random_32bit_number() % truth_images.size();
 const auto& truth_image = truth_images[random_index];
 // Load the input image.
 load_image(input_image, truth_image.info.image_filename);
 // Get a random crop of the input.
 const auto mmod_rects = extract_mmod_rects(truth_image.truth_instances);
 cropper(input_image, mmod_rects, temp.input_image, temp.mmod_rects);
 disturb_colors(temp.input_image, rnd);
 // Push the result to be used by the trainer.
 data.enqueue(temp);
 }
 };
 std::thread data_loader1([f]() { f(1); });
 std::thread data_loader2([f]() { f(2); });
 std::thread data_loader3([f]() { f(3); });
 std::thread data_loader4([f]() { f(4); });
 const auto stop_data_loaders = [&]()
 {
 data.disable();
 data_loader1.join();
 data_loader2.join();
 data_loader3.join();
 data_loader4.join();
 };
 dnn_trainer<det_bnet_type> det_trainer(det_net, sgd(weight_decay, momentum));
 try
 {
 det_trainer.be_verbose();
 det_trainer.set_learning_rate(initial_learning_rate);
 det_trainer.set_synchronization_file("pascal_voc2012_det_trainer_state_file.dat", std::chrono::minutes(10));
 det_trainer.set_iterations_without_progress_threshold(5000);
 // Output training parameters.
 cout << det_trainer << endl;
 std::vector<matrix<rgb_pixel>> samples;
 std::vector<std::vector<mmod_rect>> labels;
 // The main training loop. Keep making mini-batches and giving them to the trainer.
 // We will run until the learning rate becomes small enough.
 while (det_trainer.get_learning_rate() >= 1e-4)
 {
 samples.clear();
 labels.clear();
 // make a mini-batch
 det_training_sample temp;
 while (samples.size() < det_minibatch_size)
 {
 data.dequeue(temp);
 samples.push_back(std::move(temp.input_image));
 labels.push_back(std::move(temp.mmod_rects));
 }
 det_trainer.train_one_step(samples, labels);
 }
 }
 catch (std::exception&)
 {
 stop_data_loaders();
 throw;
 }
 // Training done, tell threads to stop and make sure to wait for them to finish before
 // moving on.
 stop_data_loaders();
 // also wait for threaded processing to stop in the trainer.
 det_trainer.get_net();
 det_net.clean();
 return det_net;
}
// ----------------------------------------------------------------------------------------
matrix<float> keep_only_current_instance(const matrix<rgb_pixel>& rgb_label_image, const rgb_pixel rgb_label)
{
 const auto nr = rgb_label_image.nr();
 const auto nc = rgb_label_image.nc();
 matrix<float> result(nr, nc);
 for (long r = 0; r < nr; ++r)
 {
 for (long c = 0; c < nc; ++c)
 {
 const auto& index = rgb_label_image(r, c);
 if (index == rgb_label)
 result(r, c) = +1;
 else if (index == dlib::rgb_pixel(224, 224, 192))
 result(r, c) = 0;
 else
 result(r, c) = -1;
 }
 }
 return result;
}
seg_bnet_type train_segmentation_network(
 const std::vector<truth_image>& truth_images,
 unsigned int seg_minibatch_size,
 const std::string& classlabel
)
{
 seg_bnet_type seg_net;
 const double initial_learning_rate = 0.1;
 const double weight_decay = 0.0001;
 const double momentum = 0.9;
 const std::string synchronization_file_name
 = "pascal_voc2012_seg_trainer_state_file"
 + (classlabel.empty() ? "" : ("_" + classlabel))
 + ".dat";
 dnn_trainer<seg_bnet_type> seg_trainer(seg_net, sgd(weight_decay, momentum));
 seg_trainer.be_verbose();
 seg_trainer.set_learning_rate(initial_learning_rate);
 seg_trainer.set_synchronization_file(synchronization_file_name, std::chrono::minutes(10));
 seg_trainer.set_iterations_without_progress_threshold(2000);
 set_all_bn_running_stats_window_sizes(seg_net, 1000);
 // Output training parameters.
 cout << seg_trainer << endl;
 std::vector<matrix<rgb_pixel>> samples;
 std::vector<matrix<float>> labels;
 // Start a bunch of threads that read images from disk and pull out random crops. It's
 // important to be sure to feed the GPU fast enough to keep it busy. Using multiple
 // thread for this kind of data preparation helps us do that. Each thread puts the
 // crops into the data queue.
 dlib::pipe<seg_training_sample> data(200);
 auto f = [&data, &truth_images](time_t seed)
 {
 dlib::rand rnd(time(0) + seed);
 matrix<rgb_pixel> input_image;
 matrix<rgb_pixel> rgb_label_image;
 matrix<rgb_pixel> rgb_label_chip;
 seg_training_sample temp;
 while (data.is_enabled())
 {
 // Pick a random input image.
 const auto random_index = rnd.get_random_32bit_number() % truth_images.size();
 const auto& truth_image = truth_images[random_index];
 const auto image_truths = truth_image.truth_instances;
 if (!image_truths.empty())
 {
 const image_info& info = truth_image.info;
 // Load the input image.
 load_image(input_image, info.image_filename);
 // Load the ground-truth (RGB) instance labels.
 load_image(rgb_label_image, info.instance_label_filename);
 // Pick a random training instance.
 const auto& truth_instance = image_truths[rnd.get_random_32bit_number() % image_truths.size()];
 const auto& truth_rect = truth_instance.mmod_rect.rect;
 const auto cropping_rect = get_cropping_rect(truth_rect);
 // Pick a random crop around the instance.
 const auto max_x_translate_amount = static_cast<long>(truth_rect.width() / 10.0);
 const auto max_y_translate_amount = static_cast<long>(truth_rect.height() / 10.0);
 const auto random_translate = point(
 rnd.get_integer_in_range(-max_x_translate_amount, max_x_translate_amount + 1),
 rnd.get_integer_in_range(-max_y_translate_amount, max_y_translate_amount + 1)
 );
 const rectangle random_rect(
 cropping_rect.left() + random_translate.x(),
 cropping_rect.top() + random_translate.y(),
 cropping_rect.right() + random_translate.x(),
 cropping_rect.bottom() + random_translate.y()
 );
 const chip_details chip_details(random_rect, chip_dims(seg_dim, seg_dim));
 // Crop the input image.
 extract_image_chip(input_image, chip_details, temp.input_image, interpolate_bilinear());
 disturb_colors(temp.input_image, rnd);
 // Crop the labels correspondingly. However, note that here bilinear
 // interpolation would make absolutely no sense - you wouldn't say that
 // a bicycle is half-way between an aeroplane and a bird, would you?
 extract_image_chip(rgb_label_image, chip_details, rgb_label_chip, interpolate_nearest_neighbor());
 // Clear pixels not related to the current instance.
 temp.label_image = keep_only_current_instance(rgb_label_chip, truth_instance.rgb_label);
 // Push the result to be used by the trainer.
 data.enqueue(temp);
 }
 else
 {
 // TODO: use background samples as well
 }
 }
 };
 std::thread data_loader1([f]() { f(1); });
 std::thread data_loader2([f]() { f(2); });
 std::thread data_loader3([f]() { f(3); });
 std::thread data_loader4([f]() { f(4); });
 const auto stop_data_loaders = [&]()
 {
 data.disable();
 data_loader1.join();
 data_loader2.join();
 data_loader3.join();
 data_loader4.join();
 };
 try
 {
 // The main training loop. Keep making mini-batches and giving them to the trainer.
 // We will run until the learning rate has dropped by a factor of 1e-4.
 while (seg_trainer.get_learning_rate() >= 1e-4)
 {
 samples.clear();
 labels.clear();
 // make a mini-batch
 seg_training_sample temp;
 while (samples.size() < seg_minibatch_size)
 {
 data.dequeue(temp);
 samples.push_back(std::move(temp.input_image));
 labels.push_back(std::move(temp.label_image));
 }
 seg_trainer.train_one_step(samples, labels);
 }
 }
 catch (std::exception&)
 {
 stop_data_loaders();
 throw;
 }
 // Training done, tell threads to stop and make sure to wait for them to finish before
 // moving on.
 stop_data_loaders();
 // also wait for threaded processing to stop in the trainer.
 seg_trainer.get_net();
 seg_net.clean();
 return seg_net;
}
// ----------------------------------------------------------------------------------------
int ignore_overlapped_boxes(
 std::vector<truth_instance>& truth_instances,
 const test_box_overlap& overlaps
)
/*!
 ensures
 - Whenever two rectangles in boxes overlap, according to overlaps(), we set the
 smallest box to ignore.
 - returns the number of newly ignored boxes.
!*/
{
 int num_ignored = 0;
 for (size_t i = 0, end = truth_instances.size(); i < end; ++i)
 {
 auto& box_i = truth_instances[i].mmod_rect;
 if (box_i.ignore)
 continue;
 for (size_t j = i+1; j < end; ++j)
 {
 auto& box_j = truth_instances[j].mmod_rect;
 if (box_j.ignore)
 continue;
 if (overlaps(box_i, box_j))
 {
 ++num_ignored;
 if(box_i.rect.area() < box_j.rect.area())
 box_i.ignore = true;
 else
 box_j.ignore = true;
 }
 }
 }
 return num_ignored;
}
std::vector<truth_instance> load_truth_instances(const image_info& info)
{
 matrix<rgb_pixel> instance_label_image;
 matrix<rgb_pixel> class_label_image;
 load_image(instance_label_image, info.instance_label_filename);
 load_image(class_label_image, info.class_label_filename);
 return rgb_label_images_to_truth_instances(instance_label_image, class_label_image);
}
std::vector<std::vector<truth_instance>> load_all_truth_instances(const std::vector<image_info>& listing)
{
 std::vector<std::vector<truth_instance>> truth_instances(listing.size());
 parallel_for(
 0,
 listing.size(),
 [&](size_t index)
 {
 truth_instances[index] = load_truth_instances(listing[index]);
 }
 );
 return truth_instances;
}
// ----------------------------------------------------------------------------------------
std::vector<truth_image> filter_based_on_classlabel(
 const std::vector<truth_image>& truth_images,
 const std::vector<std::string>& desired_classlabels
)
{
 std::vector<truth_image> result;
 const auto represents_desired_class = [&desired_classlabels](const truth_instance& truth_instance) {
 return std::find(
 desired_classlabels.begin(),
 desired_classlabels.end(),
 truth_instance.mmod_rect.label
 ) != desired_classlabels.end();
 };
 for (const auto& input : truth_images)
 {
 const auto has_desired_class = std::any_of(
 input.truth_instances.begin(),
 input.truth_instances.end(),
 represents_desired_class
 );
 if (has_desired_class) {
 // NB: This keeps only MMOD rects belonging to any of the desired classes.
 // A reasonable alternative could be to keep all rects, but mark those
 // belonging in other classes to be ignored during training.
 std::vector<truth_instance> temp;
 std::copy_if(
 input.truth_instances.begin(),
 input.truth_instances.end(),
 std::back_inserter(temp),
 represents_desired_class
 );
 result.push_back(truth_image{ input.info, temp });
 }
 }
 return result;
}
// Ignore truth boxes that overlap too much, are too small, or have a large aspect ratio.
void ignore_some_truth_boxes(std::vector<truth_image>& truth_images)
{
 for (auto& i : truth_images)
 {
 auto& truth_instances = i.truth_instances;
 ignore_overlapped_boxes(truth_instances, test_box_overlap(0.90, 0.95));
 for (auto& truth : truth_instances)
 {
 if (truth.mmod_rect.ignore)
 continue;
 const auto& rect = truth.mmod_rect.rect;
 constexpr unsigned long min_width = 35;
 constexpr unsigned long min_height = 35;
 if (rect.width() < min_width && rect.height() < min_height)
 {
 truth.mmod_rect.ignore = true;
 continue;
 }
 constexpr double max_aspect_ratio_width_to_height = 3.0;
 constexpr double max_aspect_ratio_height_to_width = 1.5;
 const double aspect_ratio_width_to_height = rect.width() / static_cast<double>(rect.height());
 const double aspect_ratio_height_to_width = 1.0 / aspect_ratio_width_to_height;
 const bool is_aspect_ratio_too_large
 = aspect_ratio_width_to_height > max_aspect_ratio_width_to_height
 || aspect_ratio_height_to_width > max_aspect_ratio_height_to_width;
 if (is_aspect_ratio_too_large)
 truth.mmod_rect.ignore = true;
 }
 }
}
// Filter images that have no (non-ignored) truth
std::vector<truth_image> filter_images_with_no_truth(const std::vector<truth_image>& truth_images)
{
 std::vector<truth_image> result;
 for (const auto& truth_image : truth_images)
 {
 const auto ignored = [](const truth_instance& truth) { return truth.mmod_rect.ignore; };
 const auto& truth_instances = truth_image.truth_instances;
 if (!std::all_of(truth_instances.begin(), truth_instances.end(), ignored))
 result.push_back(truth_image);
 }
 return result;
}
int main(int argc, char** argv) try
{
 if (argc < 2)
 {
 cout << "To run this program you need a copy of the PASCAL VOC2012 dataset." << endl;
 cout << endl;
 cout << "You call this program like this: " << endl;
 cout << "./dnn_instance_segmentation_train_ex /path/to/VOC2012 [det-minibatch-size] [seg-minibatch-size] [class-1] [class-2] [class-3] ..." << endl;
 return 1;
 }
 cout << "\nSCANNING PASCAL VOC2012 DATASET\n" << endl;
 const auto listing = get_pascal_voc2012_train_listing(argv[1]);
 cout << "images in entire dataset: " << listing.size() << endl;
 if (listing.size() == 0)
 {
 cout << "Didn't find the VOC2012 dataset. " << endl;
 return 1;
 }
 // mini-batches smaller than the default can be used with GPUs having less memory
 const unsigned int det_minibatch_size = argc >= 3 ? std::stoi(argv[2]) : 35;
 const unsigned int seg_minibatch_size = argc >= 4 ? std::stoi(argv[3]) : 100;
 cout << "det mini-batch size: " << det_minibatch_size << endl;
 cout << "seg mini-batch size: " << seg_minibatch_size << endl;
 std::vector<std::string> desired_classlabels;
 for (int arg = 4; arg < argc; ++arg)
 desired_classlabels.push_back(argv[arg]);
 if (desired_classlabels.empty())
 {
 desired_classlabels.push_back("bicycle");
 desired_classlabels.push_back("car");
 desired_classlabels.push_back("cat");
 }
 cout << "desired classlabels:";
 for (const auto& desired_classlabel : desired_classlabels)
 cout << " " << desired_classlabel;
 cout << endl;
 // extract the MMOD rects
 cout << endl << "Extracting all truth instances...";
 const auto truth_instances = load_all_truth_instances(listing);
 cout << " Done!" << endl << endl;
 DLIB_CASSERT(listing.size() == truth_instances.size());
 std::vector<truth_image> original_truth_images;
 for (size_t i = 0, end = listing.size(); i < end; ++i)
 {
 original_truth_images.push_back(truth_image{
 listing[i], truth_instances[i]
 });
 }
 auto truth_images_filtered_by_class = filter_based_on_classlabel(original_truth_images, desired_classlabels);
 cout << "images in dataset filtered by class: " << truth_images_filtered_by_class.size() << endl;
 ignore_some_truth_boxes(truth_images_filtered_by_class);
 const auto truth_images = filter_images_with_no_truth(truth_images_filtered_by_class);
 cout << "images in dataset after ignoring some truth boxes: " << truth_images.size() << endl;
 // First train an object detector network (loss_mmod).
 cout << endl << "Training detector network:" << endl;
 const auto det_net = train_detection_network(truth_images, det_minibatch_size);
 // Then train mask predictors (segmentation).
 std::map<std::string, seg_bnet_type> seg_nets_by_class;
 // This flag controls if a separate mask predictor is trained for each class.
 // Note that it would also be possible to train a separate mask predictor for
 // class groups, each containing somehow similar classes -- for example, one
 // mask predictor for cars and buses, another for cats and dogs, and so on.
 constexpr bool separate_seg_net_for_each_class = true;
 if (separate_seg_net_for_each_class)
 {
 for (const auto& classlabel : desired_classlabels)
 {
 // Consider only the truth images belonging to this class.
 const auto class_images = filter_based_on_classlabel(truth_images, { classlabel });
 cout << endl << "Training segmentation network for class " << classlabel << ":" << endl;
 seg_nets_by_class[classlabel] = train_segmentation_network(class_images, seg_minibatch_size, classlabel);
 }
 }
 else
 {
 cout << "Training a single segmentation network:" << endl;
 seg_nets_by_class[""] = train_segmentation_network(truth_images, seg_minibatch_size, "");
 }
 cout << "Saving networks" << endl;
 serialize(instance_segmentation_net_filename) << det_net << seg_nets_by_class;
}
catch(std::exception& e)
{
 cout << e.what() << endl;
}

AltStyle によって変換されたページ (->オリジナル) /