Overview Package Class Use Source Tree Index Deprecated About
GNU Classpath (0.95)
Frames | No Frames

Source for java.util.HashMap

 1:  /* HashMap.java -- a class providing a basic hashtable data structure,
 2:  mapping Object --> Object
 3:  Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
 4: 
 5: This file is part of GNU Classpath.
 6: 
 7: GNU Classpath is free software; you can redistribute it and/or modify
 8: it under the terms of the GNU General Public License as published by
 9: the Free Software Foundation; either version 2, or (at your option)
 10: any later version.
 11: 
 12: GNU Classpath is distributed in the hope that it will be useful, but
 13: WITHOUT ANY WARRANTY; without even the implied warranty of
 14: MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
 15: General Public License for more details.
 16: 
 17: You should have received a copy of the GNU General Public License
 18: along with GNU Classpath; see the file COPYING. If not, write to the
 19: Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 20: 02110-1301 USA.
 21: 
 22: Linking this library statically or dynamically with other modules is
 23: making a combined work based on this library. Thus, the terms and
 24: conditions of the GNU General Public License cover the whole
 25: combination.
 26: 
 27: As a special exception, the copyright holders of this library give you
 28: permission to link this library with independent modules to produce an
 29: executable, regardless of the license terms of these independent
 30: modules, and to copy and distribute the resulting executable under
 31: terms of your choice, provided that you also meet, for each linked
 32: independent module, the terms and conditions of the license of that
 33: module. An independent module is a module which is not derived from
 34: or based on this library. If you modify this library, you may extend
 35: this exception to your version of the library, but you are not
 36: obligated to do so. If you do not wish to do so, delete this
 37: exception statement from your version. */
 38: 
 39: 
 40:  package java.util;
 41: 
 42:  import java.io.IOException;
 43:  import java.io.ObjectInputStream;
 44:  import java.io.ObjectOutputStream;
 45:  import java.io.Serializable;
 46: 
 47:  // NOTE: This implementation is very similar to that of Hashtable. If you fix
 48:  // a bug in here, chances are you should make a similar change to the Hashtable
 49:  // code.
 50: 
 51:  // NOTE: This implementation has some nasty coding style in order to
 52:  // support LinkedHashMap, which extends this.
 53: 
 54:  /**
 55:  * This class provides a hashtable-backed implementation of the
 56:  * Map interface.
 57:  * <p>
 58:  *
 59:  * It uses a hash-bucket approach; that is, hash collisions are handled
 60:  * by linking the new node off of the pre-existing node (or list of
 61:  * nodes). In this manner, techniques such as linear probing (which
 62:  * can cause primary clustering) and rehashing (which does not fit very
 63:  * well with Java's method of precomputing hash codes) are avoided.
 64:  * <p>
 65:  *
 66:  * Under ideal circumstances (no collisions), HashMap offers O(1)
 67:  * performance on most operations (<code>containsValue()</code> is,
 68:  * of course, O(n)). In the worst case (all keys map to the same
 69:  * hash code -- very unlikely), most operations are O(n).
 70:  * <p>
 71:  *
 72:  * HashMap is part of the JDK1.2 Collections API. It differs from
 73:  * Hashtable in that it accepts the null key and null values, and it
 74:  * does not support "Enumeration views." Also, it is not synchronized;
 75:  * if you plan to use it in multiple threads, consider using:<br>
 76:  * <code>Map m = Collections.synchronizedMap(new HashMap(...));</code>
 77:  * <p>
 78:  *
 79:  * The iterators are <i>fail-fast</i>, meaning that any structural
 80:  * modification, except for <code>remove()</code> called on the iterator
 81:  * itself, cause the iterator to throw a
 82:  * <code>ConcurrentModificationException</code> rather than exhibit
 83:  * non-deterministic behavior.
 84:  *
 85:  * @author Jon Zeppieri
 86:  * @author Jochen Hoenicke
 87:  * @author Bryce McKinlay
 88:  * @author Eric Blake (ebb9@email.byu.edu)
 89:  * @see Object#hashCode()
 90:  * @see Collection
 91:  * @see Map
 92:  * @see TreeMap
 93:  * @see LinkedHashMap
 94:  * @see IdentityHashMap
 95:  * @see Hashtable
 96:  * @since 1.2
 97:  * @status updated to 1.4
 98:  */
 99:  public class HashMap<K, V> extends AbstractMap<K, V>
 100:  implements Map<K, V>, Cloneable, Serializable
 101: {
 102:  /**
 103:  * Default number of buckets. This is the value the JDK 1.3 uses. Some
 104:  * early documentation specified this value as 101. That is incorrect.
 105:  * Package visible for use by HashSet.
 106:  */
 107:  static final int DEFAULT_CAPACITY = 11;
 108: 
 109:  /**
 110:  * The default load factor; this is explicitly specified by the spec.
 111:  * Package visible for use by HashSet.
 112:  */
 113:  static final float DEFAULT_LOAD_FACTOR = 0.75f;
 114: 
 115:  /**
 116:  * Compatible with JDK 1.2.
 117:  */
 118:  private static final long serialVersionUID = 362498820763181265L;
 119: 
 120:  /**
 121:  * The rounded product of the capacity and the load factor; when the number
 122:  * of elements exceeds the threshold, the HashMap calls
 123:  * <code>rehash()</code>.
 124:  * @serial the threshold for rehashing
 125:  */
 126:  private int threshold;
 127: 
 128:  /**
 129:  * Load factor of this HashMap: used in computing the threshold.
 130:  * Package visible for use by HashSet.
 131:  * @serial the load factor
 132:  */
 133:  final float loadFactor;
 134: 
 135:  /**
 136:  * Array containing the actual key-value mappings.
 137:  * Package visible for use by nested and subclasses.
 138:  */
 139:  transient HashEntry<K, V>[] buckets;
 140: 
 141:  /**
 142:  * Counts the number of modifications this HashMap has undergone, used
 143:  * by Iterators to know when to throw ConcurrentModificationExceptions.
 144:  * Package visible for use by nested and subclasses.
 145:  */
 146:  transient int modCount;
 147: 
 148:  /**
 149:  * The size of this HashMap: denotes the number of key-value pairs.
 150:  * Package visible for use by nested and subclasses.
 151:  */
 152:  transient int size;
 153: 
 154:  /**
 155:  * The cache for {@link #entrySet()}.
 156:  */
 157:  private transient Set<Map.Entry<K, V>> entries;
 158: 
 159:  /**
 160:  * Class to represent an entry in the hash table. Holds a single key-value
 161:  * pair. Package visible for use by subclass.
 162:  *
 163:  * @author Eric Blake (ebb9@email.byu.edu)
 164:  */
 165:  static class HashEntry<K, V> extends AbstractMap.SimpleEntry<K, V>
 166:  {
 167:  /**
 168:  * The next entry in the linked list. Package visible for use by subclass.
 169:  */
 170:  HashEntry<K, V> next;
 171: 
 172:  /**
 173:  * Simple constructor.
 174:  * @param key the key
 175:  * @param value the value
 176:  */
 177:  HashEntry(K key, V value)
 178:  {
 179:  super(key, value);
 180:  }
 181: 
 182:  /**
 183:  * Called when this entry is accessed via {@link #put(Object, Object)}.
 184:  * This version does nothing, but in LinkedHashMap, it must do some
 185:  * bookkeeping for access-traversal mode.
 186:  */
 187:  void access()
 188:  {
 189:  }
 190: 
 191:  /**
 192:  * Called when this entry is removed from the map. This version simply
 193:  * returns the value, but in LinkedHashMap, it must also do bookkeeping.
 194:  *
 195:  * @return the value of this key as it is removed
 196:  */
 197:  V cleanup()
 198:  {
 199:  return value;
 200:  }
 201:  }
 202: 
 203:  /**
 204:  * Construct a new HashMap with the default capacity (11) and the default
 205:  * load factor (0.75).
 206:  */
 207:  public HashMap()
 208:  {
 209:  this(DEFAULT_CAPACITY, DEFAULT_LOAD_FACTOR);
 210:  }
 211: 
 212:  /**
 213:  * Construct a new HashMap from the given Map, with initial capacity
 214:  * the greater of the size of <code>m</code> or the default of 11.
 215:  * <p>
 216:  *
 217:  * Every element in Map m will be put into this new HashMap.
 218:  *
 219:  * @param m a Map whose key / value pairs will be put into the new HashMap.
 220:  * <b>NOTE: key / value pairs are not cloned in this constructor.</b>
 221:  * @throws NullPointerException if m is null
 222:  */
 223:  public HashMap(Map<? extends K, ? extends V> m)
 224:  {
 225:  this(Math.max(m.size() * 2, DEFAULT_CAPACITY), DEFAULT_LOAD_FACTOR);
 226:  putAll(m);
 227:  }
 228: 
 229:  /**
 230:  * Construct a new HashMap with a specific inital capacity and
 231:  * default load factor of 0.75.
 232:  *
 233:  * @param initialCapacity the initial capacity of this HashMap (&gt;=0)
 234:  * @throws IllegalArgumentException if (initialCapacity &lt; 0)
 235:  */
 236:  public HashMap(int initialCapacity)
 237:  {
 238:  this(initialCapacity, DEFAULT_LOAD_FACTOR);
 239:  }
 240: 
 241:  /**
 242:  * Construct a new HashMap with a specific inital capacity and load factor.
 243:  *
 244:  * @param initialCapacity the initial capacity (&gt;=0)
 245:  * @param loadFactor the load factor (&gt; 0, not NaN)
 246:  * @throws IllegalArgumentException if (initialCapacity &lt; 0) ||
 247:  * ! (loadFactor &gt; 0.0)
 248:  */
 249:  public HashMap(int initialCapacity, float loadFactor)
 250:  {
 251:  if (initialCapacity < 0)
 252:  throw new IllegalArgumentException("Illegal Capacity: "
 253:  + initialCapacity);
 254:  if (! (loadFactor > 0)) // check for NaN too
 255:  throw new IllegalArgumentException("Illegal Load: " + loadFactor);
 256: 
 257:  if (initialCapacity == 0)
 258:  initialCapacity = 1;
 259:  buckets = (HashEntry<K, V>[]) new HashEntry[initialCapacity];
 260:  this.loadFactor = loadFactor;
 261:  threshold = (int) (initialCapacity * loadFactor);
 262:  }
 263: 
 264:  /**
 265:  * Returns the number of kay-value mappings currently in this Map.
 266:  *
 267:  * @return the size
 268:  */
 269:  public int size()
 270:  {
 271:  return size;
 272:  }
 273: 
 274:  /**
 275:  * Returns true if there are no key-value mappings currently in this Map.
 276:  *
 277:  * @return <code>size() == 0</code>
 278:  */
 279:  public boolean isEmpty()
 280:  {
 281:  return size == 0;
 282:  }
 283: 
 284:  /**
 285:  * Return the value in this HashMap associated with the supplied key,
 286:  * or <code>null</code> if the key maps to nothing. NOTE: Since the value
 287:  * could also be null, you must use containsKey to see if this key
 288:  * actually maps to something.
 289:  *
 290:  * @param key the key for which to fetch an associated value
 291:  * @return what the key maps to, if present
 292:  * @see #put(Object, Object)
 293:  * @see #containsKey(Object)
 294:  */
 295:  public V get(Object key)
 296:  {
 297:  int idx = hash(key);
 298:  HashEntry<K, V> e = buckets[idx];
 299:  while (e != null)
 300:  {
 301:  if (equals(key, e.key))
 302:  return e.value;
 303:  e = e.next;
 304:  }
 305:  return null;
 306:  }
 307: 
 308:  /**
 309:  * Returns true if the supplied object <code>equals()</code> a key
 310:  * in this HashMap.
 311:  *
 312:  * @param key the key to search for in this HashMap
 313:  * @return true if the key is in the table
 314:  * @see #containsValue(Object)
 315:  */
 316:  public boolean containsKey(Object key)
 317:  {
 318:  int idx = hash(key);
 319:  HashEntry<K, V> e = buckets[idx];
 320:  while (e != null)
 321:  {
 322:  if (equals(key, e.key))
 323:  return true;
 324:  e = e.next;
 325:  }
 326:  return false;
 327:  }
 328: 
 329:  /**
 330:  * Puts the supplied value into the Map, mapped by the supplied key.
 331:  * The value may be retrieved by any object which <code>equals()</code>
 332:  * this key. NOTE: Since the prior value could also be null, you must
 333:  * first use containsKey if you want to see if you are replacing the
 334:  * key's mapping.
 335:  *
 336:  * @param key the key used to locate the value
 337:  * @param value the value to be stored in the HashMap
 338:  * @return the prior mapping of the key, or null if there was none
 339:  * @see #get(Object)
 340:  * @see Object#equals(Object)
 341:  */
 342:  public V put(K key, V value)
 343:  {
 344:  int idx = hash(key);
 345:  HashEntry<K, V> e = buckets[idx];
 346: 
 347:  while (e != null)
 348:  {
 349:  if (equals(key, e.key))
 350:  {
 351:  e.access(); // Must call this for bookkeeping in LinkedHashMap.
 352:  V r = e.value;
 353:  e.value = value;
 354:  return r;
 355:  }
 356:  else
 357:  e = e.next;
 358:  }
 359: 
 360:  // At this point, we know we need to add a new entry.
 361:  modCount++;
 362:  if (++size > threshold)
 363:  {
 364:  rehash();
 365:  // Need a new hash value to suit the bigger table.
 366:  idx = hash(key);
 367:  }
 368: 
 369:  // LinkedHashMap cannot override put(), hence this call.
 370:  addEntry(key, value, idx, true);
 371:  return null;
 372:  }
 373: 
 374:  /**
 375:  * Copies all elements of the given map into this hashtable. If this table
 376:  * already has a mapping for a key, the new mapping replaces the current
 377:  * one.
 378:  *
 379:  * @param m the map to be hashed into this
 380:  */
 381:  public void putAll(Map<? extends K, ? extends V> m)
 382:  {
 383:  final Map<K,V> addMap = (Map<K,V>) m;
 384:  final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
 385:  while (it.hasNext())
 386:  {
 387:  final Map.Entry<K,V> e = it.next();
 388:  // Optimize in case the Entry is one of our own.
 389:  if (e instanceof AbstractMap.SimpleEntry)
 390:  {
 391:  AbstractMap.SimpleEntry<? extends K, ? extends V> entry
 392:  = (AbstractMap.SimpleEntry<? extends K, ? extends V>) e;
 393:  put(entry.key, entry.value);
 394:  }
 395:  else
 396:  put(e.getKey(), e.getValue());
 397:  }
 398:  }
 399: 
 400:  /**
 401:  * Removes from the HashMap and returns the value which is mapped by the
 402:  * supplied key. If the key maps to nothing, then the HashMap remains
 403:  * unchanged, and <code>null</code> is returned. NOTE: Since the value
 404:  * could also be null, you must use containsKey to see if you are
 405:  * actually removing a mapping.
 406:  *
 407:  * @param key the key used to locate the value to remove
 408:  * @return whatever the key mapped to, if present
 409:  */
 410:  public V remove(Object key)
 411:  {
 412:  int idx = hash(key);
 413:  HashEntry<K, V> e = buckets[idx];
 414:  HashEntry<K, V> last = null;
 415: 
 416:  while (e != null)
 417:  {
 418:  if (equals(key, e.key))
 419:  {
 420:  modCount++;
 421:  if (last == null)
 422:  buckets[idx] = e.next;
 423:  else
 424:  last.next = e.next;
 425:  size--;
 426:  // Method call necessary for LinkedHashMap to work correctly.
 427:  return e.cleanup();
 428:  }
 429:  last = e;
 430:  e = e.next;
 431:  }
 432:  return null;
 433:  }
 434: 
 435:  /**
 436:  * Clears the Map so it has no keys. This is O(1).
 437:  */
 438:  public void clear()
 439:  {
 440:  if (size != 0)
 441:  {
 442:  modCount++;
 443:  Arrays.fill(buckets, null);
 444:  size = 0;
 445:  }
 446:  }
 447: 
 448:  /**
 449:  * Returns true if this HashMap contains a value <code>o</code>, such that
 450:  * <code>o.equals(value)</code>.
 451:  *
 452:  * @param value the value to search for in this HashMap
 453:  * @return true if at least one key maps to the value
 454:  * @see #containsKey(Object)
 455:  */
 456:  public boolean containsValue(Object value)
 457:  {
 458:  for (int i = buckets.length - 1; i >= 0; i--)
 459:  {
 460:  HashEntry<K, V> e = buckets[i];
 461:  while (e != null)
 462:  {
 463:  if (equals(value, e.value))
 464:  return true;
 465:  e = e.next;
 466:  }
 467:  }
 468:  return false;
 469:  }
 470: 
 471:  /**
 472:  * Returns a shallow clone of this HashMap. The Map itself is cloned,
 473:  * but its contents are not. This is O(n).
 474:  *
 475:  * @return the clone
 476:  */
 477:  public Object clone()
 478:  {
 479:  HashMap<K, V> copy = null;
 480:  try
 481:  {
 482:  copy = (HashMap<K, V>) super.clone();
 483:  }
 484:  catch (CloneNotSupportedException x)
 485:  {
 486:  // This is impossible.
 487:  }
 488:  copy.buckets = (HashEntry<K, V>[]) new HashEntry[buckets.length];
 489:  copy.putAllInternal(this);
 490:  // Clear the entry cache. AbstractMap.clone() does the others.
 491:  copy.entries = null;
 492:  return copy;
 493:  }
 494: 
 495:  /**
 496:  * Returns a "set view" of this HashMap's keys. The set is backed by the
 497:  * HashMap, so changes in one show up in the other. The set supports
 498:  * element removal, but not element addition.
 499:  *
 500:  * @return a set view of the keys
 501:  * @see #values()
 502:  * @see #entrySet()
 503:  */
 504:  public Set<K> keySet()
 505:  {
 506:  if (keys == null)
 507:  // Create an AbstractSet with custom implementations of those methods
 508:  // that can be overridden easily and efficiently.
 509:  keys = new AbstractSet<K>()
 510:  {
 511:  public int size()
 512:  {
 513:  return size;
 514:  }
 515: 
 516:  public Iterator<K> iterator()
 517:  {
 518:  // Cannot create the iterator directly, because of LinkedHashMap.
 519:  return HashMap.this.iterator(KEYS);
 520:  }
 521: 
 522:  public void clear()
 523:  {
 524:  HashMap.this.clear();
 525:  }
 526: 
 527:  public boolean contains(Object o)
 528:  {
 529:  return containsKey(o);
 530:  }
 531: 
 532:  public boolean remove(Object o)
 533:  {
 534:  // Test against the size of the HashMap to determine if anything
 535:  // really got removed. This is necessary because the return value
 536:  // of HashMap.remove() is ambiguous in the null case.
 537:  int oldsize = size;
 538:  HashMap.this.remove(o);
 539:  return oldsize != size;
 540:  }
 541:  };
 542:  return keys;
 543:  }
 544: 
 545:  /**
 546:  * Returns a "collection view" (or "bag view") of this HashMap's values.
 547:  * The collection is backed by the HashMap, so changes in one show up
 548:  * in the other. The collection supports element removal, but not element
 549:  * addition.
 550:  *
 551:  * @return a bag view of the values
 552:  * @see #keySet()
 553:  * @see #entrySet()
 554:  */
 555:  public Collection<V> values()
 556:  {
 557:  if (values == null)
 558:  // We don't bother overriding many of the optional methods, as doing so
 559:  // wouldn't provide any significant performance advantage.
 560:  values = new AbstractCollection<V>()
 561:  {
 562:  public int size()
 563:  {
 564:  return size;
 565:  }
 566: 
 567:  public Iterator<V> iterator()
 568:  {
 569:  // Cannot create the iterator directly, because of LinkedHashMap.
 570:  return HashMap.this.iterator(VALUES);
 571:  }
 572: 
 573:  public void clear()
 574:  {
 575:  HashMap.this.clear();
 576:  }
 577:  };
 578:  return values;
 579:  }
 580: 
 581:  /**
 582:  * Returns a "set view" of this HashMap's entries. The set is backed by
 583:  * the HashMap, so changes in one show up in the other. The set supports
 584:  * element removal, but not element addition.<p>
 585:  *
 586:  * Note that the iterators for all three views, from keySet(), entrySet(),
 587:  * and values(), traverse the HashMap in the same sequence.
 588:  *
 589:  * @return a set view of the entries
 590:  * @see #keySet()
 591:  * @see #values()
 592:  * @see Map.Entry
 593:  */
 594:  public Set<Map.Entry<K, V>> entrySet()
 595:  {
 596:  if (entries == null)
 597:  // Create an AbstractSet with custom implementations of those methods
 598:  // that can be overridden easily and efficiently.
 599:  entries = new AbstractSet<Map.Entry<K, V>>()
 600:  {
 601:  public int size()
 602:  {
 603:  return size;
 604:  }
 605: 
 606:  public Iterator<Map.Entry<K, V>> iterator()
 607:  {
 608:  // Cannot create the iterator directly, because of LinkedHashMap.
 609:  return HashMap.this.iterator(ENTRIES);
 610:  }
 611: 
 612:  public void clear()
 613:  {
 614:  HashMap.this.clear();
 615:  }
 616: 
 617:  public boolean contains(Object o)
 618:  {
 619:  return getEntry(o) != null;
 620:  }
 621: 
 622:  public boolean remove(Object o)
 623:  {
 624:  HashEntry<K, V> e = getEntry(o);
 625:  if (e != null)
 626:  {
 627:  HashMap.this.remove(e.key);
 628:  return true;
 629:  }
 630:  return false;
 631:  }
 632:  };
 633:  return entries;
 634:  }
 635: 
 636:  /**
 637:  * Helper method for put, that creates and adds a new Entry. This is
 638:  * overridden in LinkedHashMap for bookkeeping purposes.
 639:  *
 640:  * @param key the key of the new Entry
 641:  * @param value the value
 642:  * @param idx the index in buckets where the new Entry belongs
 643:  * @param callRemove whether to call the removeEldestEntry method
 644:  * @see #put(Object, Object)
 645:  */
 646:  void addEntry(K key, V value, int idx, boolean callRemove)
 647:  {
 648:  HashEntry<K, V> e = new HashEntry<K, V>(key, value);
 649:  e.next = buckets[idx];
 650:  buckets[idx] = e;
 651:  }
 652: 
 653:  /**
 654:  * Helper method for entrySet(), which matches both key and value
 655:  * simultaneously.
 656:  *
 657:  * @param o the entry to match
 658:  * @return the matching entry, if found, or null
 659:  * @see #entrySet()
 660:  */
 661:  // Package visible, for use in nested classes.
 662:  final HashEntry<K, V> getEntry(Object o)
 663:  {
 664:  if (! (o instanceof Map.Entry))
 665:  return null;
 666:  Map.Entry<K, V> me = (Map.Entry<K, V>) o;
 667:  K key = me.getKey();
 668:  int idx = hash(key);
 669:  HashEntry<K, V> e = buckets[idx];
 670:  while (e != null)
 671:  {
 672:  if (equals(e.key, key))
 673:  return equals(e.value, me.getValue()) ? e : null;
 674:  e = e.next;
 675:  }
 676:  return null;
 677:  }
 678: 
 679:  /**
 680:  * Helper method that returns an index in the buckets array for `key'
 681:  * based on its hashCode(). Package visible for use by subclasses.
 682:  *
 683:  * @param key the key
 684:  * @return the bucket number
 685:  */
 686:  final int hash(Object key)
 687:  {
 688:  return key == null ? 0 : Math.abs(key.hashCode() % buckets.length);
 689:  }
 690: 
 691:  /**
 692:  * Generates a parameterized iterator. Must be overrideable, since
 693:  * LinkedHashMap iterates in a different order.
 694:  *
 695:  * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 696:  * @return the appropriate iterator
 697:  */
 698:  <T> Iterator<T> iterator(int type)
 699:  {
 700:  // FIXME: bogus cast here.
 701:  return new HashIterator<T>(type);
 702:  }
 703: 
 704:  /**
 705:  * A simplified, more efficient internal implementation of putAll(). clone() 
 706:  * should not call putAll or put, in order to be compatible with the JDK 
 707:  * implementation with respect to subclasses.
 708:  *
 709:  * @param m the map to initialize this from
 710:  */
 711:  void putAllInternal(Map<? extends K, ? extends V> m)
 712:  {
 713:  final Map<K,V> addMap = (Map<K,V>) m;
 714:  final Iterator<Map.Entry<K,V>> it = addMap.entrySet().iterator();
 715:  size = 0;
 716:  while (it.hasNext())
 717:  {
 718:  final Map.Entry<K,V> e = it.next();
 719:  size++;
 720:  K key = e.getKey();
 721:  int idx = hash(key);
 722:  addEntry(key, e.getValue(), idx, false);
 723:  }
 724:  }
 725: 
 726:  /**
 727:  * Increases the size of the HashMap and rehashes all keys to new
 728:  * array indices; this is called when the addition of a new value
 729:  * would cause size() &gt; threshold. Note that the existing Entry
 730:  * objects are reused in the new hash table.
 731:  *
 732:  * <p>This is not specified, but the new size is twice the current size
 733:  * plus one; this number is not always prime, unfortunately.
 734:  */
 735:  private void rehash()
 736:  {
 737:  HashEntry<K, V>[] oldBuckets = buckets;
 738: 
 739:  int newcapacity = (buckets.length * 2) + 1;
 740:  threshold = (int) (newcapacity * loadFactor);
 741:  buckets = (HashEntry<K, V>[]) new HashEntry[newcapacity];
 742: 
 743:  for (int i = oldBuckets.length - 1; i >= 0; i--)
 744:  {
 745:  HashEntry<K, V> e = oldBuckets[i];
 746:  while (e != null)
 747:  {
 748:  int idx = hash(e.key);
 749:  HashEntry<K, V> dest = buckets[idx];
 750:  HashEntry<K, V> next = e.next;
 751:  e.next = buckets[idx];
 752:  buckets[idx] = e;
 753:  e = next;
 754:  }
 755:  }
 756:  }
 757: 
 758:  /**
 759:  * Serializes this object to the given stream.
 760:  *
 761:  * @param s the stream to write to
 762:  * @throws IOException if the underlying stream fails
 763:  * @serialData the <i>capacity</i>(int) that is the length of the
 764:  * bucket array, the <i>size</i>(int) of the hash map
 765:  * are emitted first. They are followed by size entries,
 766:  * each consisting of a key (Object) and a value (Object).
 767:  */
 768:  private void writeObject(ObjectOutputStream s) throws IOException
 769:  {
 770:  // Write the threshold and loadFactor fields.
 771:  s.defaultWriteObject();
 772: 
 773:  s.writeInt(buckets.length);
 774:  s.writeInt(size);
 775:  // Avoid creating a wasted Set by creating the iterator directly.
 776:  Iterator<HashEntry<K, V>> it = iterator(ENTRIES);
 777:  while (it.hasNext())
 778:  {
 779:  HashEntry<K, V> entry = it.next();
 780:  s.writeObject(entry.key);
 781:  s.writeObject(entry.value);
 782:  }
 783:  }
 784: 
 785:  /**
 786:  * Deserializes this object from the given stream.
 787:  *
 788:  * @param s the stream to read from
 789:  * @throws ClassNotFoundException if the underlying stream fails
 790:  * @throws IOException if the underlying stream fails
 791:  * @serialData the <i>capacity</i>(int) that is the length of the
 792:  * bucket array, the <i>size</i>(int) of the hash map
 793:  * are emitted first. They are followed by size entries,
 794:  * each consisting of a key (Object) and a value (Object).
 795:  */
 796:  private void readObject(ObjectInputStream s)
 797:  throws IOException, ClassNotFoundException
 798:  {
 799:  // Read the threshold and loadFactor fields.
 800:  s.defaultReadObject();
 801: 
 802:  // Read and use capacity, followed by key/value pairs.
 803:  buckets = (HashEntry<K, V>[]) new HashEntry[s.readInt()];
 804:  int len = s.readInt();
 805:  size = len;
 806:  while (len-- > 0)
 807:  {
 808:  Object key = s.readObject();
 809:  addEntry((K) key, (V) s.readObject(), hash(key), false);
 810:  }
 811:  }
 812: 
 813:  /**
 814:  * Iterate over HashMap's entries.
 815:  * This implementation is parameterized to give a sequential view of
 816:  * keys, values, or entries.
 817:  *
 818:  * @author Jon Zeppieri
 819:  */
 820:  private final class HashIterator<T> implements Iterator<T>
 821:  {
 822:  /**
 823:  * The type of this Iterator: {@link #KEYS}, {@link #VALUES},
 824:  * or {@link #ENTRIES}.
 825:  */
 826:  private final int type;
 827:  /**
 828:  * The number of modifications to the backing HashMap that we know about.
 829:  */
 830:  private int knownMod = modCount;
 831:  /** The number of elements remaining to be returned by next(). */
 832:  private int count = size;
 833:  /** Current index in the physical hash table. */
 834:  private int idx = buckets.length;
 835:  /** The last Entry returned by a next() call. */
 836:  private HashEntry last;
 837:  /**
 838:  * The next entry that should be returned by next(). It is set to something
 839:  * if we're iterating through a bucket that contains multiple linked
 840:  * entries. It is null if next() needs to find a new bucket.
 841:  */
 842:  private HashEntry next;
 843: 
 844:  /**
 845:  * Construct a new HashIterator with the supplied type.
 846:  * @param type {@link #KEYS}, {@link #VALUES}, or {@link #ENTRIES}
 847:  */
 848:  HashIterator(int type)
 849:  {
 850:  this.type = type;
 851:  }
 852: 
 853:  /**
 854:  * Returns true if the Iterator has more elements.
 855:  * @return true if there are more elements
 856:  */
 857:  public boolean hasNext()
 858:  {
 859:  return count > 0;
 860:  }
 861: 
 862:  /**
 863:  * Returns the next element in the Iterator's sequential view.
 864:  * @return the next element
 865:  * @throws ConcurrentModificationException if the HashMap was modified
 866:  * @throws NoSuchElementException if there is none
 867:  */
 868:  public T next()
 869:  {
 870:  if (knownMod != modCount)
 871:  throw new ConcurrentModificationException();
 872:  if (count == 0)
 873:  throw new NoSuchElementException();
 874:  count--;
 875:  HashEntry e = next;
 876: 
 877:  while (e == null)
 878:  e = buckets[--idx];
 879: 
 880:  next = e.next;
 881:  last = e;
 882:  if (type == VALUES)
 883:  return (T) e.value;
 884:  if (type == KEYS)
 885:  return (T) e.key;
 886:  return (T) e;
 887:  }
 888: 
 889:  /**
 890:  * Removes from the backing HashMap the last element which was fetched
 891:  * with the <code>next()</code> method.
 892:  * @throws ConcurrentModificationException if the HashMap was modified
 893:  * @throws IllegalStateException if called when there is no last element
 894:  */
 895:  public void remove()
 896:  {
 897:  if (knownMod != modCount)
 898:  throw new ConcurrentModificationException();
 899:  if (last == null)
 900:  throw new IllegalStateException();
 901: 
 902:  HashMap.this.remove(last.key);
 903:  last = null;
 904:  knownMod++;
 905:  }
 906:  }
 907: }
Overview Package Class Use Source Tree Index Deprecated About
GNU Classpath (0.95)

AltStyle によって変換されたページ (->オリジナル) /