Die Heliosphäre (von altgriechischἥλιοςhelios und σφαῖραsphaira, gemeinsam „Sonnenkugel") ist die Astrosphäre der Sonne. Sie bezeichnet im Weltraum einen weiträumigen Bereich um die Sonne, in dem der Sonnenwind mit seinen mitgeführten Magnetfeldern wirksam ist. In diesem Bereich verdrängt der Teilchenstrom der Sonne das interstellare Medium. Die Umlaufbahnen der Planeten liegen weit innerhalb.
Die Heliosphäre unter dem Einfluss des interstellaren Mediums mit den Bahnen der Planeten und des Pluto. Sie wird durch die Heliopause begrenzt. Inwieweit sie verformt ist und einen langen „Helioschweif" hat, ist unklar. Das interstellare Gas staut sich vermutlich zu einer Bugwelle (bow wave), nicht aber zu einer Stoßwelle (bow shock).
Das Sonnensystem ist in das interstellare Medium eingebettet, das vorwiegend aus extrem verdünntem Gas sowie Staub und Magnetfeldern besteht.
Die Sonne wiederum emittiert einen konstanten Strom von Partikeln, den Sonnenwind. Dieser besteht hauptsächlich aus ionisiertemWasserstoff und Helium (Protonen, Heliumkerne und Elektronen). In einem Abstand von 1 AE von der Sonne (Umlaufbahn der Erde) beträgt die Teilchendichte des Sonnenwindes ein bis zehn Teilchen pro Kubikzentimeter.[1][2] Der Sonnenwind mit seinen elektrisch geladenen Teilchen und dem mitgeführten interplanetaren Magnetfeld verdrängt das interstellare Medium und bildet eine „Blase" um die Sonne. Diese Blase ist die Heliosphäre.
Das Sonnensystem bewegt sich mit einer Geschwindigkeit von etwa 23 km/s durch das interstellare Medium,[3][4] aus der Richtung des Sternbilds Stier kommend in die Richtung des Sternbilds Skorpion.[5] Dadurch entsteht ein „Fahrtwind" (interstellarer Wind). Ob und in welchem Maße die Heliosphäre dadurch verformt wird – vorne eingedrückt ist und hinten einen „Helioschweif" (engl. heliotail) ausbildet – ist noch weitgehend unklar.
Heliopause – der Sonnenwind und das interstellare Medium treffen aufeinander und werden gestoppt. Die ionisierten Partikel der Sonne und des interstellaren Mediums stehen im Druckgleichgewicht.
Für den Bereich innerhalb der Randstoßwelle gibt es keine besondere Bezeichnung. Der Bereich zwischen Randstoßwelle und Heliopause wird Heliohülle (engl. heliosheath) genannt.[7][8] Jenseits der Heliopause endet definitionsgemäß die Heliosphäre, und der interstellare Raum beginnt.
Im inneren Bereich der Heliosphäre bewegt sich der Sonnenwind unbeeinflusst durch den Raum, da er mit Überschallgeschwindigkeit strömt, d. h. seine Strömungsgeschwindigkeit ist größer als die Geschwindigkeit, mit der sich Störungen der Dichte bzw. des Druckes im Plasma fortbewegen (Schallgeschwindigkeit). Nur elektrisch neutrale Atome aus dem interstellaren Medium und ein geringer Teil der galaktischen kosmischen Strahlung können so weit in die Heliosphäre eindringen. Abgesehen von den wenigen Partikeln, die das schaffen, stammt die gesamte Teilchenmenge dort von der Sonne.
Veränderung des Teilchenflusses an der Randstoßwelle (termination shock) und an der Heliopause, gemessen von Voyager 1
An der Randstoßwelle sinkt die Strömungsgeschwindigkeit unter die Schallgeschwindigkeit, sodass zum ersten Mal eine Beeinflussung durch das interstellare Medium auftritt. Die Partikel des Sonnenwindes werden abrupt abgebremst – in niedrigen Breiten (d. h. nahe der Ekliptik) von ca. 350 km/s auf ca. 130 km/s.[9][Anm. 1] Durch dieses Abbremsen und das weitere Nachströmen von Materie verdichtet und erhitzt sich das Medium des Sonnenwindes. Als Folge kommt es zu einem deutlichen Anstieg des Magnetfeldes.
Die Raumsonde Voyager 2 maß beim Durchqueren der Randstoßwelle einen sprunghaften Anstieg der Temperatur von ca. 11 000 K auf 180 000 K,[10] was allerdings deutlich unter den Vorhersagen einiger Modelle lag, die Temperaturen von einigen Millionen Kelvin vorhergesagt hatten.[Anm. 2] Zusammen mit den Ergebnissen der STEREO-Sonden ergab sich, dass 70 % der Bewegungsenergie des Sonnenwindes nicht in Wärme übergehen, sondern in die Ionisation von dort angetroffener Materie.[11] Dies könnten elektrisch neutrale Wasserstoffatome sein, die mit einer Geschwindigkeit von etwa 25 km/s in die Heliohülle eingedrungen und bis zur Randstoßwelle vorgestoßen sind.[9][12]
Voyager 1 wurde beim Vorbeiflug am Saturnmond Titan 34° nördlich aus der Ekliptikebene abgelenkt und erreichte die Randstoßwelle bei 94 AE Entfernung von der Sonne; Voyager 2 hingegen, die am Neptun 26° südlich abgelenkt wurde, erreichte sie schon bei 84 AE Entfernung. Eine mögliche Erklärung für diesen Unterschied ist, dass das interstellare magnetische Feld die südliche Hälfte der Heliosphäre nach innen drückt und die nördliche Hälfte nach außen wölbt.[12][13][14] Eine andere mögliche Ursache ist die variable Sonnenaktivität, da die Messungen der beiden Voyagersonden im Abstand von drei Jahren vorgenommen wurden.[15]
Ebenso zeigte sich am Beispiel von Voyager 2, dass die Randstoßwelle keine konsistente feste Grenze, sondern ein dynamisches Ereignis ist, das sich ähnlich der Brandung an einem Strand verhält. So gibt es Dichteschwankungen im Sonnenwind, hervorgerufen durch koronale Massenausbrüche oder Überlagerung der schnellen und langsamen Sonnenwinde,[16] die mit den Wellen im Meer vergleichbar sind und somit weiter in die Heliohülle hinausreichen. Durch die differentielle Rotation der Sonne und die große Entfernung von der Sonne können so in kurzen Abständen große Sprünge in der absoluten Entfernung von der Sonne möglich sein. Voyager 2 passierte die Randstoßwelle innerhalb einiger Tage fünf Mal, bevor sie am 30. August 2007 endgültig durchschritten war.[12][14]