Benutzer:Hourssales/Informationsmaße

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Shannon:  I S ( p ) = i p i ln p i Renyi:  I q R ( p ) = 1 q 1 ln ( i p i q ) Tsallis:  I q T ( p ) = 1 1 q ( 1 i p i q ) {\displaystyle {\begin{aligned}{\text{Shannon: }}&I^{\text{S}}(p)=\sum _{i}p_{i}\ln p_{i}\\{\text{Renyi: }}&I_{q}^{\text{R}}(p)={\frac {1}{q-1}}\ln \left(\sum _{i}p_{i}^{q}\right)\\{\text{Tsallis: }}&I_{q}^{\text{T}}(p)={\frac {1}{1-q}}\left(1-\sum _{i}p_{i}^{q}\right)\end{aligned}}} {\displaystyle {\begin{aligned}{\text{Shannon: }}&I^{\text{S}}(p)=\sum _{i}p_{i}\ln p_{i}\\{\text{Renyi: }}&I_{q}^{\text{R}}(p)={\frac {1}{q-1}}\ln \left(\sum _{i}p_{i}^{q}\right)\\{\text{Tsallis: }}&I_{q}^{\text{T}}(p)={\frac {1}{1-q}}\left(1-\sum _{i}p_{i}^{q}\right)\end{aligned}}} Wir wissen: lim x 0 ln ( x + 1 ) = x {\displaystyle \lim _{x\rightarrow 0}\ln(x+1)=x} {\displaystyle \lim _{x\rightarrow 0}\ln(x+1)=x}

I q R ( p ) I S ( p ) : {\displaystyle I_{q}^{\text{R}}(p)\rightarrow I^{\text{S}}(p):} {\displaystyle I_{q}^{\text{R}}(p)\rightarrow I^{\text{S}}(p):}

[Bearbeiten | Quelltext bearbeiten ]

I 1 R ( p ) := lim q 1 I q R ( p ) = lim q 1 1 q 1 ln ( i p i q ) = lim q 1 1 q 1 ln ( i p i q 1 i p i = 1 + 1 ) i p i q i p i = lim q 1 1 q 1 ( i p i q i p i ) = lim q 1 1 q 1 i ( p i q p i ) = lim q 1 1 q 1 i p i ( p i q 1 1 ) ln p i q 1 = lim q 1 1 q 1 i p i ln p i q 1 = lim q 1 1 q 1 i p i ( q 1 ) ln p i = lim q 1 q 1 q 1 i p i ln p i = i p i ln p i = I S ( p ) {\displaystyle {\begin{aligned}I_{1}^{\text{R}}(p)&:=\lim _{q\rightarrow 1}I_{q}^{\text{R}}(p)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\ln \left(\sum _{i}p_{i}^{q}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\underbrace {\ln \left(\underbrace {\sum _{i}p_{i}^{q}} _{\rightarrow 1}-\underbrace {\sum _{i}p_{i}} _{=1}+1\right)} _{\rightarrow \sum _{i}p_{i}^{q}-\sum _{i}p_{i}}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\left(\sum _{i}p_{i}^{q}-\sum _{i}p_{i}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}\left(p_{i}^{q}-p_{i}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}p_{i}\underbrace {\left(p_{i}^{q-1}-1\right)} _{\rightarrow \ln p_{i}^{q-1}}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}p_{i}\ln p_{i}^{q-1}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}p_{i}(q-1)\ln p_{i}\\&=\lim _{q\rightarrow 1}{\frac {q-1}{q-1}}\sum _{i}p_{i}\ln p_{i}\\&=\sum _{i}p_{i}\ln p_{i}\\&=I^{\text{S}}(p)\end{aligned}}} {\displaystyle {\begin{aligned}I_{1}^{\text{R}}(p)&:=\lim _{q\rightarrow 1}I_{q}^{\text{R}}(p)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\ln \left(\sum _{i}p_{i}^{q}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\underbrace {\ln \left(\underbrace {\sum _{i}p_{i}^{q}} _{\rightarrow 1}-\underbrace {\sum _{i}p_{i}} _{=1}+1\right)} _{\rightarrow \sum _{i}p_{i}^{q}-\sum _{i}p_{i}}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\left(\sum _{i}p_{i}^{q}-\sum _{i}p_{i}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}\left(p_{i}^{q}-p_{i}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}p_{i}\underbrace {\left(p_{i}^{q-1}-1\right)} _{\rightarrow \ln p_{i}^{q-1}}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}p_{i}\ln p_{i}^{q-1}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\sum _{i}p_{i}(q-1)\ln p_{i}\\&=\lim _{q\rightarrow 1}{\frac {q-1}{q-1}}\sum _{i}p_{i}\ln p_{i}\\&=\sum _{i}p_{i}\ln p_{i}\\&=I^{\text{S}}(p)\end{aligned}}}

I q T ( p ) I S ( p ) : {\displaystyle I_{q}^{\text{T}}(p)\rightarrow I^{\text{S}}(p):} {\displaystyle I_{q}^{\text{T}}(p)\rightarrow I^{\text{S}}(p):}

[Bearbeiten | Quelltext bearbeiten ]

I 1 T ( p ) := lim q 1 I q T ( p ) = lim q 1 1 1 q ( 1 i p i q ) = lim q 1 1 q 1 ( i p i q 1 1 ) ln i p i q 1 + 1 = lim q 1 1 q 1 ln i p i q = lim q 1 I q R ( p ) = I S ( p ) {\displaystyle {\begin{aligned}I_{1}^{\text{T}}(p)&:=\lim _{q\rightarrow 1}I_{q}^{\text{T}}(p)\\&=\lim _{q\rightarrow 1}{\frac {1}{1-q}}\left(1-\sum _{i}p_{i}^{q}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\underbrace {\left(\underbrace {\sum _{i}p_{i}^{q}} _{\rightarrow 1}-1\right)} _{\rightarrow \ln \sum _{i}p_{i}^{q}-1+1}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\ln \sum _{i}p_{i}^{q}\\&=\lim _{q\rightarrow 1}I_{q}^{\text{R}}(p)\\&=I^{\text{S}}(p)\end{aligned}}} {\displaystyle {\begin{aligned}I_{1}^{\text{T}}(p)&:=\lim _{q\rightarrow 1}I_{q}^{\text{T}}(p)\\&=\lim _{q\rightarrow 1}{\frac {1}{1-q}}\left(1-\sum _{i}p_{i}^{q}\right)\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\underbrace {\left(\underbrace {\sum _{i}p_{i}^{q}} _{\rightarrow 1}-1\right)} _{\rightarrow \ln \sum _{i}p_{i}^{q}-1+1}\\&=\lim _{q\rightarrow 1}{\frac {1}{q-1}}\ln \sum _{i}p_{i}^{q}\\&=\lim _{q\rightarrow 1}I_{q}^{\text{R}}(p)\\&=I^{\text{S}}(p)\end{aligned}}}

Abgerufen von „https://de.wikipedia.org/w/index.php?title=Benutzer:Hourssales/Informationsmaße&oldid=127963549"