Benutzer:Hourssales/HA7

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Druckversion wird nicht mehr unterstützt und kann Darstellungsfehler aufweisen. Bitte aktualisiere deine Browser-Lesezeichen und verwende stattdessen die Standard-Druckfunktion des Browsers.

1.

Räumliche Grafische Darstellung von f(x) auf zwei Achsen.

f ( x ) = 9 25 x 2 + 81 {\displaystyle \mathrm {f} (x)={\sqrt {-{\frac {9}{25}}x^{2}+81}}} {\displaystyle \mathrm {f} (x)={\sqrt {-{\frac {9}{25}}x^{2}+81}}}

a

R o t a t i o n s v o l u m e n   d e r   F u n k t i o n   u m   d i e   y A c h s e   i m   I n t e r v a l l   I = [ 0 ; y 0 ] y = 9 25 x 2 + 81 y 2 = 9 25 x 2 + 81 y 2 81 = 9 25 x 2 x 2 = 25 9 y 2 + 225 x = 25 9 y 2 + 225 f ( y ) = 25 9 y 2 + 225 0 = 25 9 y 2 + 225 0 = 25 9 y 2 + 225 y 0 , 1 = 9 y 0 , 2 = 9   ( e n t f a ¨ l l t , d a   9 [ 0 , y 0 ] ) V Y = π 0 9 f ( y ) d y V Y = 4241   m 3 {\displaystyle {\begin{aligned}&\mathrm {Rotationsvolumen\ der\ Funktion\ um\ die\ y{-}Achse\ im\ Intervall\ I=[0;y_{0}]} \\y&={\sqrt {-{\frac {9}{25}}x^{2}+81}}\\y^{2}&=-{\frac {9}{25}}x^{2}+81\\y^{2}-81&=-{\frac {9}{25}}x^{2}\\x^{2}&=-{\frac {25}{9}}y^{2}+225\\x&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\\\mathrm {f} (y)&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\0円&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\0円&=-{\frac {25}{9}}y^{2}+225\\y_{0,1}&=9\\y_{0,2}&=-9\ \mathrm {(entf{\ddot {a}}llt,da\ {-}9\notin [0,y_{0}])} \\V_{Y}&=\pi \int \limits _{0}^{9}\mathrm {f} (y),円\mathrm {d} y\\V_{Y}&=4241\ m^{3}\end{aligned}}} {\displaystyle {\begin{aligned}&\mathrm {Rotationsvolumen\ der\ Funktion\ um\ die\ y{-}Achse\ im\ Intervall\ I=[0;y_{0}]} \\y&={\sqrt {-{\frac {9}{25}}x^{2}+81}}\\y^{2}&=-{\frac {9}{25}}x^{2}+81\\y^{2}-81&=-{\frac {9}{25}}x^{2}\\x^{2}&=-{\frac {25}{9}}y^{2}+225\\x&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\\\mathrm {f} (y)&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\0円&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\0円&=-{\frac {25}{9}}y^{2}+225\\y_{0,1}&=9\\y_{0,2}&=-9\ \mathrm {(entf{\ddot {a}}llt,da\ {-}9\notin [0,y_{0}])} \\V_{Y}&=\pi \int \limits _{0}^{9}\mathrm {f} (y),円\mathrm {d} y\\V_{Y}&=4241\ m^{3}\end{aligned}}}

b

D e r   A n s t i e g   a n   d e r   S t e l l e   x 0   i s t   d i e   A b l e i t u n g   v o n   f ( x )   a n   x 0 . y = m x + n m = f ( x 0 ) = 9 25 x 0 ( 1 9 25 x 0 2 + 81 ) = 9 25 x 0 9 25 x 0 2 + 81     y = ( 9 25 x 0 9 25 x 0 2 + 81 ) x + n n = y ( 9 25 x 0 9 25 x 0 2 + 81 ) x n = 9 25 x 0 2 + 81 ( 9 25 x 0 9 25 x 0 2 + 81 ) x n = 9 25 x 0 2 + 81 + 9 25 x 0 2 9 25 x 0 2 + 81 n = 81 9 25 x 0 2 + 81     t x 0 ( x ) = ( 9 25 x 0 9 25 x 0 2 + 81 ) x + 81 9 25 x 0 2 + 81 {\displaystyle {\begin{aligned}&\mathrm {Der\ Anstieg\ an\ der\ Stelle\ x_{0}\ ist\ die\ Ableitung\ von\ f(x)\ an\ x_{0}.} \\y&=mx+n\\m&=\mathrm {f} '(x_{0})\\&=-{\frac {9}{25}}x_{0}\cdot (-{\frac {1}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}})\\&={\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\\ &\ \\y&=\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x+n\\n&=y-\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x\\n&={\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}-\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x\\n&={\frac {-{\frac {9}{25}}{x_{0}}^{2}+81+{\frac {9}{25}}{x_{0}}^{2}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\n&={\frac {81}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\\ &\ \\\mathrm {t} _{x_{0}}(x)&=\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x+{\frac {81}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\end{aligned}}} {\displaystyle {\begin{aligned}&\mathrm {Der\ Anstieg\ an\ der\ Stelle\ x_{0}\ ist\ die\ Ableitung\ von\ f(x)\ an\ x_{0}.} \\y&=mx+n\\m&=\mathrm {f} '(x_{0})\\&=-{\frac {9}{25}}x_{0}\cdot (-{\frac {1}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}})\\&={\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\\ &\ \\y&=\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x+n\\n&=y-\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x\\n&={\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}-\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x\\n&={\frac {-{\frac {9}{25}}{x_{0}}^{2}+81+{\frac {9}{25}}{x_{0}}^{2}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\n&={\frac {81}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\\ &\ \\\mathrm {t} _{x_{0}}(x)&=\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x+{\frac {81}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\end{aligned}}}

c

tan α 1 = 2 9 tan α 2 = m t = f ( 9 )     g ( x ) = m x + n m = tan α A n s t i e g m = tan ( 90 α α 2 ) m = tan ( 90 70 , 9 arctan f ( 9 ) ) [ m ] = 0,369 3     n = y 0 = 5,494 4 {\displaystyle {\begin{aligned}\tan \alpha _{1}&={\frac {2}{9}}\\\tan \alpha _{2}&=m_{t}=\mathrm {f} '(9)\\\ &\ \\\mathrm {g} (x)&=mx+n\\m&=\tan \alpha _{Anstieg}\\m&=\tan \left(90^{\circ }-\alpha -\alpha _{2}\right)\\m&=\tan \left(90^{\circ }-70{,}9^{\circ }-\arctan \mathrm {f} '(9)\right)\\\left[m\right]&=0{,}3693\\\ &\ \\n&=y_{0}=5{,}4944\end{aligned}}} {\displaystyle {\begin{aligned}\tan \alpha _{1}&={\frac {2}{9}}\\\tan \alpha _{2}&=m_{t}=\mathrm {f} '(9)\\\ &\ \\\mathrm {g} (x)&=mx+n\\m&=\tan \alpha _{Anstieg}\\m&=\tan \left(90^{\circ }-\alpha -\alpha _{2}\right)\\m&=\tan \left(90^{\circ }-70{,}9^{\circ }-\arctan \mathrm {f} '(9)\right)\\\left[m\right]&=0{,}3693\\\ &\ \\n&=y_{0}=5{,}4944\end{aligned}}}

d

α = 90 {\displaystyle \alpha =90^{\circ }} {\displaystyle \alpha =90^{\circ }}

Abgerufen von „https://de.wikipedia.org/w/index.php?title=Benutzer:Hourssales/HA7&oldid=66015540"