1.
{\displaystyle \mathrm {f} (x)={\sqrt {-{\frac {9}{25}}x^{2}+81}}}
a
{\displaystyle {\begin{aligned}&\mathrm {Rotationsvolumen\ der\ Funktion\ um\ die\ y{-}Achse\ im\ Intervall\ I=[0;y_{0}]} \\y&={\sqrt {-{\frac {9}{25}}x^{2}+81}}\\y^{2}&=-{\frac {9}{25}}x^{2}+81\\y^{2}-81&=-{\frac {9}{25}}x^{2}\\x^{2}&=-{\frac {25}{9}}y^{2}+225\\x&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\\\mathrm {f} (y)&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\0円&={\sqrt {-{\frac {25}{9}}y^{2}+225}}\0円&=-{\frac {25}{9}}y^{2}+225\\y_{0,1}&=9\\y_{0,2}&=-9\ \mathrm {(entf{\ddot {a}}llt,da\ {-}9\notin [0,y_{0}])} \\V_{Y}&=\pi \int \limits _{0}^{9}\mathrm {f} (y),円\mathrm {d} y\\V_{Y}&=4241\ m^{3}\end{aligned}}}
b
{\displaystyle {\begin{aligned}&\mathrm {Der\ Anstieg\ an\ der\ Stelle\ x_{0}\ ist\ die\ Ableitung\ von\ f(x)\ an\ x_{0}.} \\y&=mx+n\\m&=\mathrm {f} '(x_{0})\\&=-{\frac {9}{25}}x_{0}*(-{\frac {1}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}})\\&={\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\y&=\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x+n\\n&=y-\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x\\n&={\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}-\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x\\n&={\frac {-{\frac {9}{25}}{x_{0}}^{2}+81+{\frac {9}{25}}{x_{0}}^{2}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\\n&={\frac {8}{1}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}\\\mathrm {t} _{x_{0}}(x)&=\left({\frac {{\frac {9}{25}}x_{0}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}}\right)x+{\frac {8}{1}}{\sqrt {-{\frac {9}{25}}{x_{0}}^{2}+81}}\end{aligned}}}