Nichtrostender Stahl
Rostfreier Stahl, auch bekannt als Nichtrostender Stahl, ist ein allgemeinsprachlicher Ausdruck für rost- und säurebeständigen Stahl. Ebenfalls verbreitet ist die Bezeichnung Nirosta, die jedoch einen Markennamen der Firma ThyssenKrupp darstellt. Als häufiges Synonym wird der Begriff Edelstahl verwendet, der jedoch abweichend definiert ist.
Beschreibung
Verwendung
Legierung) von entscheidender Bedeutung. Meist erreicht man die Beständigkeit in chloridhaltigen Medien durch Zulegieren von mindestens 2 Prozent Molybdän (z. B. X2CrNiMnMoNbN25-18-5-4 →EN-Norm Kurzname). Edelstahl wie X5CrNi18-8 ist bei bestimmten Säuren, etwa Salzsäure (34 %), nicht beständig. Das Metall löst sich mit der Zeit völlig auf.
Seit der Patenterteilung auf Stähle mit „hoher Widerstandskraft gegen Korrosion" im Jahr 1912 durch die Firma Friedrich Krupp AG in Essen hat die Produktion von rostfreiem Stahl einen gewaltigen Aufschwung genommen. Auslöser für die Entwicklung eines solchen Stahls war die aufstrebende chemische Industrie im Deutschen Reich. Die damaligen Syntheseverfahren mit Heißdampf, säurehaltigen Medien und sehr hohen Temperaturen ließen herkömmliche Stähle spröde (Wasserstoffsprödigkeit) und rissig werden. Viele damalige Reaktoren waren bis dahin aus Granit gefertigt, um diese Nachteile zu umgehen. Die 1913 anlaufende Ammoniaksynthese (Haber-Bosch-Verfahren) konnte nur durch den Einsatz von austenitischen CrNi-Stählen, wie sie Krupp ein Jahr zuvor entwickelt hatte, realisiert werden. Die parallele Entwicklung der Stahl- und Chemieindustrie, insbesondere dieser beiden Ereignisse, war deshalb kein Zufall.
Wegen der guten Umformbarkeit von Blechen aus rostfreiem Stahl finden Teile aus diesem Material eine immer größere Verbreitung in der Industrie, im Haushalt oder auch in medizinischen Geräten. Obwohl sich die meisten rostfreien Stähle nur sehr schlecht zerspanen lassen, bietet ihr Einsatz überwiegend Vorteile. Hier sind beispielsweise neben hygienischen Aspekten auch die Langlebigkeit der produzierten Teile und Vorteile im Umweltschutz zu nennen. Nachteil gegenüber anderen Stählen ist jedoch die zumeist geringe Zugfestigkeit und oft fehlende Härtbarkeit (siehe weiterer Text). Bemerkenswert ist auch die im Vergleich zu Kupfer und seinen Legierungen geringere antibakterielle Wirkung. Dazu ein US-amerik. Testergebnis, auch bekannt als oligodynamischer Effekt (Oligodynamie).
Ohne rostfreien Stahl wären viele Kryostaten nicht realisierbar. Die schlechte Wärmeleitfähigkeit und dünne Wandungen (zum Beispiel Rohre mit weniger als 0,3 mm Wandstärke) ermöglichen eine gute Isolation zwischen Kryoflüssigkeit und Raumtemperatur. Weitere Vorteile sind UHV-Dichtheit von Schweiß-Verbindungen und geringer Magnetismus.
Synonyme
Synonyme für rostfreien Stahl sind Edelstahl rostfrei, STAINLESS, INOX (Das Akronym INOX wird aus dem französischen Wort inoxydable gebildet und bedeutet soviel wie „nicht oxidierbar" oder „rostfrei"), RSH (rost-, säure- und hitzebständig) sowie Markennamen wie Cromargan, V2A (Versuchsschmelze 2 Austenit, entstand 1912 für Leg.-Typ X5CrNi18-8) oder V4A (wie V2A, jedoch zusätzlich mit 2 % Mo legiert, was diesen Stahl widerstandsfähiger gegen Korrosion in chloridhaltigen Medien macht (Salzwasser, Schwimmbäder, chem. Industrie etc.)), VA-Stahl und Nirosta. Der Markenname Nirosta (ThyssenKrupp Stainless) wird selten auch Nieroster oder Niroster geschrieben.
Fälschlicherweise wird für alle nichtrostenden Stähle auch der Begriff Edelstahl sehr häufig verwendet. Edelstahl ist jedoch die Bezeichnung für einen Stahl mit besonders hoher Reinheit. Er muss nicht zwangsläufig hochlegiert und rostfrei sein wie die o. g. Sorte.
Zusammensetzungen
Der häufigste Legierungstyp eines nichtrostenden Stahls, der uns im Alltag begegnet, ist die Legierung X5CrNi18-10 (Werkstoffnummer 1.4301, Aufschrift 18/10, auch bekannt als V2A). Hierbei handelt es sich um einen relativ weichen, nickelhaltigen, nicht ferromagnetischen Austenit-Stahl für z. B. Töpfe, Essbesteck (ausgenommen Messerklinge), Spülbecken, Auspuffanlagen für Verbrennungsmotoren u. ä.
Für Werkzeuge und Messer werden jedoch härtbare martensitisch-ferritische Stähle verwendet, die neben Chrom oft auch Vanadium und Molybdän enthalten und magnetisierbar sind. Typische Stahlsorten hierfür sind X30Cr13 und die hochwertigere Legierung X50CrMoV15 (vgl. Messerstahl).
Im Offshore-Bereich finden auch ferritisch-austenitische Duplex-Stähle, z. B. 1.4462 (X2CrNiMoN22-5-3) Anwendung. Anstelle von Nickel kann für austenitische Stähle auch das billigere Mangan als Legierungselement verwendet werden, aber die allgemeine Qualität dieser Stähle ist niedriger.
Die Beständigkeit gegenüber Korrosion sinkt mit steigendem Kohlenstoffgehalt, da Chrom eine hohe Kohlenstoffaffinität besitzt und sich hartes, sprödes Chromcarbid vorwiegend an den Korngrenzen bildet, zu Lasten von schützendem Chromoxid. Außerdem neigen dann die Stähle zur interkristallinen Korrosion. Um diesem Effekt entgegenzuwirken und damit auch die Schweißbarkeit zu verbessern, wird der Kohlenstoffgehalt niedrig gehalten und die entsprechenden Stahlsorten noch durch Zugabe von Niob oder/und Titan (die eine höhere Affinität zum Kohlenstoff als Chrom haben), stabilisiert. Derartig stabilisierte, rein ferritische Stähle mit 12 bis 18 % Chromgehalt wie X2CrTi12 (1.4512), X2CrTiNb18 (1.4509), X3CrTi17(1.4510) stellen heute den wichtigsten Werkstoff für den Bau von Abgasanlagen in der Automobilindustrie dar. Annähernd 10% der weltweiten Produktion rostfreier Stähle entfällt auf diese Anwendung. Der kostensparende Verzicht auf Nickel, sowie der geringere Wärmeausdehnungskoeffizient des ferritischen Kristallgitters sind die spezifischen Vorteile dieser Stähle. Die zusätzliche Legierung mit Molybdän verbessert die Korrosionsbeständigkeit.
Übersicht der Werkstoffbezeichnungen
EN-Norm
Werkstoff-Nr. |
EN-Norm | ASTM/AISI
Bezeichnung |
UNS-Nummer |
---|---|---|---|
1.4016 | X6Cr17 | 430 | S43000 |
1.4509 | X2CrTiNb18 | 441 | S44100 |
1.4510 | X3CrTi17 | 439 | |
1.4512 | X2CrTi12 (alt X6 CrTi 12) | 409 | S40900 |
1.4526 | X6CrMoNb17-1 | 436 | S43600 |
1.4310 | X10CrNi18-8 (alt X12 CrNi17 7) | 301 | S30100 |
1.4318 | X2CrNiN18-7 | 301LN | |
1.4307 | X2CrNi18-9 | 304L | S30403 |
1.4306 | X2CrNi19-11 | 304L | S30403 |
1.4311 | X2CrNiN18-10 | 304LN | S30453 |
1.4301 | X5CrNi18-10 | 304 | S30400 |
1.4948 | X6CrNi18-11 | 304H | S30409 |
1.4303 | X4CrNi18-12 (alt X5 CrNi18 12) | 305 | S30500 |
1.4541 | X6CrNiTi18-10 | 321 | S32100 |
1.4878 | X10CrNiTi18-10 (alt X12 CrNiTi18 9) | 321H | S32109 |
1.4404 | X2CrNiMo17-12-2 | 316L | S31603 |
1.4401 | X5CrNiMo17-12-2 | 316 | S31600 |
1.4406 | X2CrNiMoN17-11-2 | 316LN | S31653 |
1.4432 | X2CrNiMo17-12-3 | 316L | S31603 |
1.4435 | X2CrNiMo18-14-3 | 316L | S31603 |
1.4436 | X3CrNiMo17-13-3 | 316 | S31600 |
1.4571 | X6CrNiMoTi17-12-2 | 316Ti | S31635 |
1.4429 | X2CrNiMoN17-13-3 | 316LN | S31653 |
1.4438 | X2CrNiMo18-15-4 | 317L | S31703 |
1.4539 | X1NiCrMoCu25-20-5 | 904L | N08904 |
1.4547 | X1CrNiMoCuN20-18-7 | S31254 |
In der Tabelle sind die allgemeinen nichtrostenden und säurebeständigen Stähle aufgelistet.
Schrauben
Bei Schrauben aus rostfreien Stählen steht häufig die Bezeichnung A2-70. Hierbei steht A2 für die Stahlsorte (A für austenitisch, 2 für die Sorte), 70 für die Zugfestigkeit in kp/cm2 (veraltet) entsprechend 1/10 der Zugfestigkeit 700 MPa. Für den Offshore-Bereich sind Bauteile aus dem Sonderwerkstoff X2CrNiMoN17-13-5 (Werkstoffnummer 1.4439/Alloy 317 LN) zu bevorzugen. Schraubenwerkstoffe aus nichtrostenden Stählen und deren Bezeichnungen sind in der Norm EN ISO 3506 genormt. Beim Ersetzen von Schrauben mit konventionellem Werkstoff durch Niro-Schrauben ist zu beachten, dass die Werkstoffkennwerte (Zugfestigkeit, Bruchdehnung, Dehngrenze etc.) dieser Niro-Schrauben meist unter denen konventioneller Schrauben mit Festigkeitsklasse größer gleich 5.6 liegt. Ein einfaches Ersetzen nach dem 1:1-Prinzip ist gerade bei sicherheitsrelevanten Verbindungen genau zu prüfen.
In der europäischen Norm EN 10088, Teil 1-3 sind die technischen Lieferbedingungen für nichtrostende Stähle allgemein geregelt.
Zum Abschätzen der Korrosionsbeständigkeit eines rostfreien Stahls kann die Wirksumme (auch PRE-Wert) dienen. Je höher diese ist, desto beständiger ist die Legierung gegen Lochfrass oder Spaltkorrosion. Legierungen mit einer Wirksumme über 33 gelten als seewasserbeständig.
Andere korrosionsbeständige Legierungen
Nicht mehr zu Stählen gezählt werden Cr-Ni-Legierungen, die weniger als 50 % Eisen enthalten und noch bessere Eigenschaften bezüglich Korrosions- und Warmfestigkeit haben. Diese so genannten Superlegierungen gehören zu den hochwarmfesten Legierungen, und basieren auf einem um 1906 zum ersten Mal beschriebenen Legierungstyp NiCr8020. Durch Zusätze von Aluminium und Titan werden diese aushärtbar und bei hohen Temperaturen die Festigkeit stark gesteigert. Moderne Handelsnamen sind z. B. Inconel, Incoloy, Hastelloy, Cronifer, Nicrofer. Letztere ist eine hochkorrosionsbeständige Nickel-Chrom-Molybdän-Legierung, die noch in verschiedenen Legierungen unterteilt ist, je nach Zusatz (Nicrofer 3127 hMo, Nicrofer 5923 hMo, H-C4 oder H-C22).
Anwendung finden solche Legierungen hauptsächlich in Strahltriebwerken, Kraftwerksindustrie (Gasturbinen), Öl- und Gasindustrie, Umwelttechnik (REA), sowie chemische Verfahrenstechnik,also überall dort,wo hohe Festigkeit bei sehr hohen Temperaturen oder unter hoch korrosiven Bedingungen auf lange Dauer gewährleistet sein muss.