„Benutzer:Hourssales/HA6" – Versionsunterschied

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Versionsgeschichte interaktiv durchsuchen
← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied →
Inhalt gelöscht Inhalt hinzugefügt
Zeile 52: Zeile 52:
<math>\begin{align}
<math>\begin{align}
\Delta E & = \int\limits_0^24 (-5e^{-0{,}1t}) ,円 \mathrm dt \\
\Delta E & = \int\limits_0^24 (-5e^{-0{,}1t}) ,円 \mathrm dt \\
& = -45{,}46 Wh
& = -45{,}46 (追記) ,円 \mathrm { (追記ここまで)Wh(追記) } (追記ここまで)
\end{align}</math>
\end{align}</math>



Version vom 8. Oktober 2009, 18:17 Uhr

Nr. 4

0 = x 3 k 2 x {\displaystyle 0=x^{3}-k^{2}x} {\displaystyle 0=x^{3}-k^{2}x}
a = x 0 = 0 {\displaystyle a=x_{0}=0} {\displaystyle a=x_{0}=0}
b = x 1 ;   b > 0 {\displaystyle b=x_{1};\ b>0} {\displaystyle b=x_{1};\ b>0}
0 = x ( x 2 k 2 ) {\displaystyle 0=x\left(x^{2}-k^{2}\right)} {\displaystyle 0=x\left(x^{2}-k^{2}\right)}
0 = x 2 k 2 {\displaystyle 0=x^{2}-k^{2}} {\displaystyle 0=x^{2}-k^{2}}
x 0 2 = k 2 {\displaystyle {x_{0}}^{2}=k^{2}} {\displaystyle {x_{0}}^{2}=k^{2}}

| b | = | x 1 | = | k | {\displaystyle \left|b\right|=\left|x_{1}\right|=\left|k\right|} {\displaystyle \left|b\right|=\left|x_{1}\right|=\left|k\right|}

8 2 = 0 k f ( x ) d x 4 = | 0 k ( x 3 k 2 x ) d x | = | [ 1 4 x 4 k 2 2 x 2 ] 0 k | = | 1 4 k 4 k 2 2 k 2 | = 1 4 k 4 k = 16 4 = 16 = 2 {\displaystyle {\begin{aligned}{\frac {8}{2}}&=\int \limits _{0}^{k}\mathrm {f} (x),円\mathrm {d} x\4円&=\left|\int \limits _{0}^{k}(x^{3}-k^{2}x),円\mathrm {d} x\right|\\&=\left|\left[{\frac {1}{4}}x^{4}-{\frac {k^{2}}{2}}x^{2}\right]_{0}^{k}\right|\\&=\left|{\frac {1}{4}}k^{4}-{\frac {k^{2}}{2}}k^{2}\right|\\&={\frac {1}{4}}k^{4}\\k&={\sqrt[{4}]{16}}={\sqrt {\sqrt {16}}}=2\end{aligned}}} {\displaystyle {\begin{aligned}{\frac {8}{2}}&=\int \limits _{0}^{k}\mathrm {f} (x),円\mathrm {d} x\4円&=\left|\int \limits _{0}^{k}(x^{3}-k^{2}x),円\mathrm {d} x\right|\\&=\left|\left[{\frac {1}{4}}x^{4}-{\frac {k^{2}}{2}}x^{2}\right]_{0}^{k}\right|\\&=\left|{\frac {1}{4}}k^{4}-{\frac {k^{2}}{2}}k^{2}\right|\\&={\frac {1}{4}}k^{4}\\k&={\sqrt[{4}]{16}}={\sqrt {\sqrt {16}}}=2\end{aligned}}}

Nr. 5

a

f ( x ) = x 2 + 4 g ( x ) = x + 2 A = 1 2 f ( x ) d x 1 2 g ( x ) d x = 1 2 ( x 2 + 4 ) d x 1 2 ( x + 2 ) d x = [ 1 3 x 3 + 4 x ] 1 2 [ 1 2 x 2 + 2 x ] 1 2 = ( ( 1 3 ( 2 ) 3 4 ( 2 ) ) ( 1 3 ( 1 ) 3 + 4 ( 1 ) ) ) ( ( 1 2 ( 2 ) 2 + 2 ( 2 ) ) ( 1 2 ( 1 ) 2 + 2 ( 1 ) ) ) A = 9 2 {\displaystyle {\begin{aligned}\mathrm {f} (x)&=-x^{2}+4\\\mathrm {g} (x)&=-x+2\\A&=\int \limits _{-1}^{2}\mathrm {f} (x),円\mathrm {d} x-\int \limits _{-1}^{2}\mathrm {g} (x),円\mathrm {d} x\\&=\int \limits _{-1}^{2}(-x^{2}+4)\mathrm {d} x-\int \limits _{-1}^{2}(-x+2)\mathrm {d} x\\&=\left[-{\frac {1}{3}}x^{3}+4x\right]_{-1}^{2}-\left[-{\frac {1}{2}}x^{2}+2x\right]_{-1}^{2}\\&={\Bigl (}{\bigl (}-{\frac {1}{3}}(2)^{3}-4(2){\bigr )}-{\bigl (}{\frac {1}{3}}(-1)^{3}+4(-1){\bigr )}{\Bigr )}-{\Bigl (}{\bigl (}-{\frac {1}{2}}(2)^{2}+2(2){\bigr )}-{\bigl (}-{\frac {1}{2}}(-1)^{2}+2(-1){\bigr )}{\Bigr )}\\A&={\frac {9}{2}}\end{aligned}}} {\displaystyle {\begin{aligned}\mathrm {f} (x)&=-x^{2}+4\\\mathrm {g} (x)&=-x+2\\A&=\int \limits _{-1}^{2}\mathrm {f} (x),円\mathrm {d} x-\int \limits _{-1}^{2}\mathrm {g} (x),円\mathrm {d} x\\&=\int \limits _{-1}^{2}(-x^{2}+4)\mathrm {d} x-\int \limits _{-1}^{2}(-x+2)\mathrm {d} x\\&=\left[-{\frac {1}{3}}x^{3}+4x\right]_{-1}^{2}-\left[-{\frac {1}{2}}x^{2}+2x\right]_{-1}^{2}\\&={\Bigl (}{\bigl (}-{\frac {1}{3}}(2)^{3}-4(2){\bigr )}-{\bigl (}{\frac {1}{3}}(-1)^{3}+4(-1){\bigr )}{\Bigr )}-{\Bigl (}{\bigl (}-{\frac {1}{2}}(2)^{2}+2(2){\bigr )}-{\bigl (}-{\frac {1}{2}}(-1)^{2}+2(-1){\bigr )}{\Bigr )}\\A&={\frac {9}{2}}\end{aligned}}}

b

f ( x ) = s q r t x g ( x ) = 3 4 x + 3 A = 0 s f ( x ) d x + s 4 g ( x ) d x f ( x ) = g ( x ) Y 1 = x 2 + 4 Y 2 = 3 4 x + 3 G T R [ G R A P H ] [ I S C T ] s = 2,078 9 A = 0 s s q r t x d x + s 4 ( 3 4 x + 3 ) d x = [ 2 3 x 3 2 ] 0 s + [ 3 8 2 + 3 x ] s 4 = ( 2 3 s 3 2 ) + ( 3 8 4 2 + 3 ( 4 ) ) ( 3 8 s 2 + 3 s ) = 3,382 3 {\displaystyle {\begin{aligned}\mathrm {f} (x)&=sqrtx\\\mathrm {g} (x)&=-{\frac {3}{4}}x+3\\A&=\int \limits _{0}^{s}\mathrm {f} (x),円\mathrm {d} x+\int \limits _{s}^{4}\mathrm {g} (x),円\mathrm {d} x\\\mathrm {f} (x)&=\mathrm {g} (x)\\\mathrm {Y} 1&=-x^{2}+4\\\mathrm {Y} 2&=-{\frac {3}{4}}x+3\\&\to \mathrm {GTR} \to [\mathrm {GRAPH} ]\to [\mathrm {ISCT} ]\\s&=2{,}0789\\A&=\int \limits _{0}^{s}sqrtx,円\mathrm {d} x+\int \limits _{s}^{4}(-{\frac {3}{4}}x+3),円\mathrm {d} x\\&=\left[{\frac {2}{3}}x{^{\frac {3}{2}}}\right]_{0}^{s}+\left[-{\frac {3}{8}}^{2}+3x\right]_{s}^{4}\\&=\left({\frac {2}{3}}s^{\frac {3}{2}}\right)+\left(-{\frac {3}{8}}4^{2}+3(4)\right)-\left(-{\frac {3}{8}}s^{2}+3s\right)\\&=3{,}3823\end{aligned}}} {\displaystyle {\begin{aligned}\mathrm {f} (x)&=sqrtx\\\mathrm {g} (x)&=-{\frac {3}{4}}x+3\\A&=\int \limits _{0}^{s}\mathrm {f} (x),円\mathrm {d} x+\int \limits _{s}^{4}\mathrm {g} (x),円\mathrm {d} x\\\mathrm {f} (x)&=\mathrm {g} (x)\\\mathrm {Y} 1&=-x^{2}+4\\\mathrm {Y} 2&=-{\frac {3}{4}}x+3\\&\to \mathrm {GTR} \to [\mathrm {GRAPH} ]\to [\mathrm {ISCT} ]\\s&=2{,}0789\\A&=\int \limits _{0}^{s}sqrtx,円\mathrm {d} x+\int \limits _{s}^{4}(-{\frac {3}{4}}x+3),円\mathrm {d} x\\&=\left[{\frac {2}{3}}x{^{\frac {3}{2}}}\right]_{0}^{s}+\left[-{\frac {3}{8}}^{2}+3x\right]_{s}^{4}\\&=\left({\frac {2}{3}}s^{\frac {3}{2}}\right)+\left(-{\frac {3}{8}}4^{2}+3(4)\right)-\left(-{\frac {3}{8}}s^{2}+3s\right)\\&=3{,}3823\end{aligned}}}

Nr. 6

Δ E = 0 2 4 ( 5 e 0 , 1 t ) d t = 45 , 46 W h {\displaystyle {\begin{aligned}\Delta E&=\int \limits _{0}^{2}4(-5e^{-0{,}1t}),円\mathrm {d} t\\&=-45{,}46,円\mathrm {Wh} \end{aligned}}} {\displaystyle {\begin{aligned}\Delta E&=\int \limits _{0}^{2}4(-5e^{-0{,}1t}),円\mathrm {d} t\\&=-45{,}46,円\mathrm {Wh} \end{aligned}}}

Nr. 7

f ( x ) = e 0 , 1 x + 6 g ( x ) = e 0 , 1 x + 6 , 5 F a s s u n g s v e r m o ¨ g e n V F a s s = π 0 25 f ( x ) 2 d x V F a s s = π 0 25 ( e 0 , 1 x + 6 ) 2 d x V F a s s = 9358 , 7 c m 3 = 9 , 4 l V G = π 0 25 , 5 ( e 0 , 1 x + 6 , 5 d x V G = 10767 , 5 c m 3 = 11 l V K = V G V F V K = 1408 , 8 c m 3 {\displaystyle {\begin{aligned}\mathrm {f} (x)&=e^{0{,}1x}+6\\\mathrm {g} (x)&=e^{0{,}1x}+6{,}5\\&\mathrm {Fassungsverm{\ddot {o}}gen} \\V_{Fass}&=\pi \int \limits _{0}^{25}\mathrm {f} (x)^{2},円\mathrm {d} x\\V_{Fass}&=\pi \int \limits _{0}^{25}(e^{0{,}1x}+6)^{2},円\mathrm {d} x\\V_{Fass}&=9358{,}7,円\mathrm {cm} ^{3}=9{,}4,円\mathrm {l} \\V_{G}&=\pi \int \limits _{0}^{25{,}5}(e^{0,1x}+6{,}5,円\mathrm {d} x\\V_{G}&=10767{,}5,円\mathrm {cm} ^{3}=11,円\mathrm {l} \\V_{K}&=V_{G}-V_{F}\\V_{K}&=1408{,}8,円\mathrm {cm} ^{3}\end{aligned}}} {\displaystyle {\begin{aligned}\mathrm {f} (x)&=e^{0{,}1x}+6\\\mathrm {g} (x)&=e^{0{,}1x}+6{,}5\\&\mathrm {Fassungsverm{\ddot {o}}gen} \\V_{Fass}&=\pi \int \limits _{0}^{25}\mathrm {f} (x)^{2},円\mathrm {d} x\\V_{Fass}&=\pi \int \limits _{0}^{25}(e^{0{,}1x}+6)^{2},円\mathrm {d} x\\V_{Fass}&=9358{,}7,円\mathrm {cm} ^{3}=9{,}4,円\mathrm {l} \\V_{G}&=\pi \int \limits _{0}^{25{,}5}(e^{0,1x}+6{,}5,円\mathrm {d} x\\V_{G}&=10767{,}5,円\mathrm {cm} ^{3}=11,円\mathrm {l} \\V_{K}&=V_{G}-V_{F}\\V_{K}&=1408{,}8,円\mathrm {cm} ^{3}\end{aligned}}}

Nr. 8

a

P 1 ( 1 , 0 | 0 , 1 ) P 2 ( 1 , 5 | 0 , 2 ) P 3 ( 2 , 5 | 0 , 5 ) P 4 ( 4 , 0 | 0 , 9 ) P 5 ( 5 , 0 | 1 , 0 ) [ G T R ] [ S T A T ] [ R E G : x 3 ] f ( x ) = 0,015 x 3 + 0,109 x 2 + 0,052 x 0,071 {\displaystyle {\begin{aligned}\mathrm {P} _{1}&(1{,}0\vert 0{,}1)\\\mathrm {P} _{2}&(1{,}5\vert 0{,}2)\\\mathrm {P} _{3}&(2{,}5\vert 0{,}5)\\\mathrm {P} _{4}&(4{,}0\vert 0{,}9)\\\mathrm {P} _{5}&(5{,}0\vert 1{,}0)\\&[\mathrm {GTR} ]\to [\mathrm {STAT} ]\to [\mathrm {REG} {\mathopen {:}},円x^{3}]\\\mathrm {f} (x)&=-0{,}015x^{3}+0{,}109x^{2}+0{,}052x-0{,}071\end{aligned}}} {\displaystyle {\begin{aligned}\mathrm {P} _{1}&(1{,}0\vert 0{,}1)\\\mathrm {P} _{2}&(1{,}5\vert 0{,}2)\\\mathrm {P} _{3}&(2{,}5\vert 0{,}5)\\\mathrm {P} _{4}&(4{,}0\vert 0{,}9)\\\mathrm {P} _{5}&(5{,}0\vert 1{,}0)\\&[\mathrm {GTR} ]\to [\mathrm {STAT} ]\to [\mathrm {REG} {\mathopen {:}},円x^{3}]\\\mathrm {f} (x)&=-0{,}015x^{3}+0{,}109x^{2}+0{,}052x-0{,}071\end{aligned}}}

b

s 2 = 0 2 f ( x ) d x = 0,190 5 k m s 5 = 0 5 f ( x ) d x = 2,440 5 k m s 6 = s 5 + 1 = 3,440 5 k m {\displaystyle {\begin{aligned}s_{2}&=\int \limits _{0}^{2}\mathrm {f} (x),円\mathrm {d} x&=0{,}1905\mathrm {km} \\s_{5}&=\int \limits _{0}^{5}\mathrm {f} (x),円\mathrm {d} x&=2{,}4405\mathrm {km} \\s_{6}&=s_{5}+1&=3{,}4405\mathrm {km} \end{aligned}}} {\displaystyle {\begin{aligned}s_{2}&=\int \limits _{0}^{2}\mathrm {f} (x),円\mathrm {d} x&=0{,}1905\mathrm {km} \\s_{5}&=\int \limits _{0}^{5}\mathrm {f} (x),円\mathrm {d} x&=2{,}4405\mathrm {km} \\s_{6}&=s_{5}+1&=3{,}4405\mathrm {km} \end{aligned}}}

Nr. 9

D e r   R o t a t i o n s k o ¨ r p e r   h a t   e i n e   r a ¨ u m l i c h e   P a r a b e l f o r m , w e n n   d i e   u n t e r e   I n t e r v a l l g r e n z e   g r o ¨ s s e r   o d e r   g l e i c h   1   i s t .   I m   I n t e r v a l l   0     x   <   1   i s t   d i e   F u n k t i o n   j e d o c h n i c h t   d e f i n i e r t , i m   g e g e b e n e n   I n t e r v a l l   e x i s t i e r t   a l s o   k e i n   K o ¨ r p e r . V = π 0 2 s q r t x 1 2 d x = π 0 2 ( x 1 ) d x = π [ 1 2 x 2 x ] 0 2 = π ( 4 2 2 ) V = 0 F u ¨ r   d a s   I n t e r v a l l   I = [ 1 ; 2 ] : V = π 1 2 ( x 1 ) d x = π [ 1 2 x 2 x ] 1 2 d x = π ( ( 4 2 2 ) ( 1 2 1 ) ) V = π 2 {\displaystyle {\begin{aligned}&\mathrm {Der\ Rotationsk{\ddot {o}}rper\ hat\ eine\ r{\ddot {a}}umliche\ Parabelform,wenn\ die\ untere\ Intervall-} \\&\mathrm {grenze\ gr{\ddot {o}}sser\ oder\ gleich\ 1\ ist.\ Im\ Intervall\ 0\ \leq \ x\ <\ 1\ ist\ die\ Funktion\ jedoch} \\&\mathrm {nicht\ definiert,im\ gegebenen\ Intervall\ existiert\ also\ {\color {red}kein\ K{\ddot {o}}rper}.} \\V&=\pi \int \limits _{0}^{2}sqrt{x-1}^{2},円\mathrm {d} x\\&=\pi \int \limits _{0}^{2}(x-1),円\mathrm {d} x\\&=\pi \left[{\frac {1}{2}}x^{2}-x\right]_{0}^{2}\\&=\pi \left({\frac {4}{2}}-2\right)\\V&=0\\&\mathrm {F{\ddot {u}}r\ das\ Intervall\ I=[1;2]:} \\V&=\pi \int \limits _{1}^{2}(x-1),円\mathrm {d} x\\&=\pi \left[{\frac {1}{2}}x^{2}-x\right]_{1}^{2},円\mathrm {d} x\\&=\pi {\bigl (}\left({\frac {4}{2}}-2\right)-\left({\frac {1}{2}}-1\right){\bigr )}\\V&={\frac {\pi }{2}}\end{aligned}}} {\displaystyle {\begin{aligned}&\mathrm {Der\ Rotationsk{\ddot {o}}rper\ hat\ eine\ r{\ddot {a}}umliche\ Parabelform,wenn\ die\ untere\ Intervall-} \\&\mathrm {grenze\ gr{\ddot {o}}sser\ oder\ gleich\ 1\ ist.\ Im\ Intervall\ 0\ \leq \ x\ <\ 1\ ist\ die\ Funktion\ jedoch} \\&\mathrm {nicht\ definiert,im\ gegebenen\ Intervall\ existiert\ also\ {\color {red}kein\ K{\ddot {o}}rper}.} \\V&=\pi \int \limits _{0}^{2}sqrt{x-1}^{2},円\mathrm {d} x\\&=\pi \int \limits _{0}^{2}(x-1),円\mathrm {d} x\\&=\pi \left[{\frac {1}{2}}x^{2}-x\right]_{0}^{2}\\&=\pi \left({\frac {4}{2}}-2\right)\\V&=0\\&\mathrm {F{\ddot {u}}r\ das\ Intervall\ I=[1;2]:} \\V&=\pi \int \limits _{1}^{2}(x-1),円\mathrm {d} x\\&=\pi \left[{\frac {1}{2}}x^{2}-x\right]_{1}^{2},円\mathrm {d} x\\&=\pi {\bigl (}\left({\frac {4}{2}}-2\right)-\left({\frac {1}{2}}-1\right){\bigr )}\\V&={\frac {\pi }{2}}\end{aligned}}}

Abgerufen von „https://de.wikipedia.org/w/index.php?title=Benutzer:Hourssales/HA6&oldid=65370521"