draft-ietf-ipsec-udp-encaps-04

[フレーム]

IP Security Protocol Working Group (IPSEC) A. Huttunen
INTERNET-DRAFT F-Secure Corporation
Category: Standards track B. Swander
Expires: May 2003 Microsoft
 M. Stenberg
 SSH Communications Security Corp
 V. Volpe
 Cisco Systems
 L. DiBurro
 Nortel Networks
 November 2002
 UDP Encapsulation of IPsec Packets
 draft-ietf-ipsec-udp-encaps-04.txt
Status of this Memo
 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.
 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.
 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."
 The list of current Internet-Drafts can be accessed at
 http://www.ietf.org/ietf/1id-abstracts.txt.
 The list of Internet-Draft Shadow Directories can be accessed at
 http://www.ietf.org/shadow.html.
 This Internet-Draft will expire on May, 2003.
Copyright Notice
 Copyright (C) The Internet Society (2002). All Rights Reserved.
Abstract
 This draft defines methods to encapsulate and decapsulate
 IP Encapsulating Security Payload (ESP) packets inside UDP packets
 for the purpose of traversing Network Address Translators.
 ESP encapsulation as defined in this document is capable of being
 used in both IPv4 and IPv6 scenarios. The encapsulation is used
 whenever negotiated using Internet Key Exchange (IKE).
Change Log
 Version -01
 - removed everything related to the AH-protocol
 - added instructions on how to use the encapsulation with
 some other key management protocol than IKE
 Version -02
 - changed to using 4-byte non-ESP marker, removed all references
 to using this with other key management protocols
 - TCP checksum handling for transport mode related discussion
 modified
 - copied tunnel mode security considerations from the
 earlier draft-huttunen-ipsec-esp-in-udp-00.txt draft,
 added transport mode considerations
 Version -03
 - Clarifications to security considerations
 Version -04
 - Clarified checksum handling
 - Added an IANA considerations section
 - Added an implementation options appendix
 - Reworded 'Abstract'
 - References grouped
1. Introduction
 This draft defines methods to encapsulate and decapsulate ESP
 packets inside UDP packets for the purpose of traversing NATs.
 The UDP port numbers are the same as used by IKE traffic, as
 defined in [Kiv04].
 It is up to the need of the clients whether transport mode
 or tunnel mode is to be supported. L2TP/IPsec clients MUST support
 transport mode since [RFC 3193] defines that L2TP/IPsec MUST use
 transport mode], and IPsec tunnel mode clients MUST support tunnel
 mode.
 An IKE implementation supporting this draft MUST NOT use the
 ESP SPI field zero for ESP packets. This ensures that
 IKE packets and ESP packets can be distinguished from each other.
 UDP encapsulation of ESP packets as defined in this document is
 written in terms of IPv4 headers. There is no technical reason
 why an IPv6 header could not be used as the outer header and/or
 as the inner header.
2. Packet Formats
2.1 UDP-encapsulated ESP Header Format
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ESP header [RFC 2406] |
~ ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The UDP header is a standard [RFC 768] header, where
- Source Port and Destination Port MUST be the same as used by
 floated IKE traffic.
- Checksum SHOULD be transmitted as a zero value.
- Receivers MUST NOT depend upon the UDP checksum being
 a zero value.
The SPI field in the ESP header must not be zero.
2.2 Floated IKE Header Format
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Non-ESP Marker |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| IKE header [RFC 2409] |
~ ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The UDP header is a standard [RFC 768] header, and is used
as defined in [Kiv04]. This document does not set any new
requirements for the checksum handling of an IKE packet.
Non-ESP Marker is 4 bytes of zero aligning with the SPI field
of an ESP packet.
2.3 NAT-keepalive Packet Format
 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Source Port | Destination Port |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Length | Checksum |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 0xFF |
+-+-+-+-+-+-+-+-+
The UDP header is a standard [RFC 768] header, where
- Source Port and Destination Port MUST be the same as used by
 UDP-ESP encapsulation of section 2.1
- Checksum SHOULD be transmitted as a zero value.
- Receivers MUST NOT depend upon the UDP checksum being
 a zero value.
The sender SHOULD use a one octet long payload with the value 0xFF.
The receiver SHOULD ignore a received NAT-keepalive packet.
3. Encapsulation and Decapsulation Procedures
3.1 Auxiliary Procedures
3.1.1 Tunnel Mode Decapsulation NAT Procedure
When a tunnel mode has been used to transmit packets, the inner
IP header can contain addresses that are not suitable for the
current network. This procedure defines how these addresses are
to be converted to suitable addresses for the current network.
Depending on local policy, one of the following MUST be done:
a) If a valid source IP address space has been defined in the policy
 for the encapsulated packets from the peer, check that the source
 IP address of the inner packet is valid according to the policy.
b) If an address has been assigned for the remote peer, check
 that the source IP address used in the inner packet is the
 same as the IP address assigned.
c) NAT is performed for the packet, making it suitable for transport
 in the local network.
3.1.2 Transport Mode Decapsulation NAT Procedure
When a transport mode has been used to transmit packets, contained
TCP or UDP headers will contain incorrect checksums due to the change
of parts of the IP header during transit. This procedure defines how
to fix these checksums.
Depending on local policy, one of the following MUST be done:
a) If the protocol header after the ESP header is a TCP/UDP
 header and the peer's real source IP address has been received
 according to [Kiv04], incrementally recompute the TCP/UDP checksum:
 - subtract the IP source address in the received packet
 from the checksum
 - add the real IP source address received via IKE to the checksum
b) If the protocol header after the ESP header is a TCP/UDP
 header, recompute the checksum field in the TCP/UDP header.
c) If the protocol header after the ESP header is an UDP
 header, zero the checksum field in the UDP header. If the protocol
 header after the ESP header is a TCP header, and there is an
 option to flag to the stack that TCP checksum does not need to
 be computed, then that flag MAY be used. This SHOULD only be done
 for transport mode, and if the packet is integrity protected. Tunnel
 mode TCP checksums MUST be verified.
 [This is not a violation to the spirit of section 4.2.2.7 in RFC 1122
 because a checksum is being generated by the sender, and verified
 by the receiver. That checksum is the integrity over the packet
 performed by IPsec.]
In addition an implementation MAY fix any contained protocols that
have been broken by NAT.
3.2 Transport Mode ESP Encapsulation
 BEFORE APPLYING ESP/UDP
 ----------------------------
 IPv4 |orig IP hdr | | |
 |(any options)| TCP | Data |
 ----------------------------
 AFTER APPLYING ESP/UDP
 -------------------------------------------------------
 IPv4 |orig IP hdr | UDP | ESP | | | ESP | ESP|
 |(any options)| Hdr | Hdr | TCP | Data | Trailer |Auth|
 -------------------------------------------------------
 |<----- encrypted ---->|
 |<------ authenticated ----->|
1) Ordinary ESP encapsulation procedure is used.
2) A properly formatted UDP header is inserted where shown.
3) The Total Length, Protocol and Header Checksum fields in the
 IP header are edited to match the resulting IP packet.
3.3 Transport Mode ESP Decapsulation
1) The UDP header is removed from the packet.
2) The Total Length, Protocol and Header Checksum fields in the
 new IP header are edited to match the resulting IP packet.
3) Ordinary ESP decapsulation procedure is used.
4) Transport mode decapsulation NAT procedure is used.
3.4 Tunnel Mode ESP Encapsulation
 BEFORE APPLYING ESP/UDP
 ----------------------------
 IPv4 |orig IP hdr | | |
 |(any options)| TCP | Data |
 ----------------------------
 AFTER APPLYING ESP/UDP
 --------------------------------------------------------------
IPv4 |new h.| UDP | ESP |orig IP hdr | | | ESP | ESP|
 |(opts)| Hdr | Hdr |(any options)| TCP | Data | Trailer |Auth|
 --------------------------------------------------------------
 |<------------ encrypted ----------->|
 |<------------- authenticated ------------>|
1) Ordinary ESP encapsulation procedure is used.
2) A properly formatted UDP header is inserted where shown.
3) The Total Length, Protocol and Header Checksum fields in the
 new IP header are edited to match the resulting IP packet.
3.5 Tunnel Mode ESP Decapsulation
1) The UDP header is removed from the packet.
2) The Total Length, Protocol and Header Checksum fields in the
 new IP header are edited to match the resulting IP packet.
3) Ordinary ESP decapsulation procedure is used.
4) Tunnel mode decapsulation NAT procedure is used.
4. NAT Keepalive Procedure
The sole purpose of sending NAT-keepalive packets is to keep
NAT mappings alive for the duration of a connection between
the peers. Reception of NAT-keepalive packets MUST NOT be
used to detect liveness of a connection.
A peer MAY send a NAT-keepalive packet if there exists one
or more phase I or phase II SAs between the peers, or such
an SA has existed at most N minutes earlier. N is a locally
configurable parameter with a default value of 5 minutes.
A peer SHOULD send a NAT-keepalive packet if a need to send such
packets is detected according to [Kiv04] and if no other packet to
the peer has been sent in M seconds. M is a locally configurable
parameter with a default value of 20 seconds.
5. Security Considerations
5.1 DoS
 On some systems ESPUDP may have DoS attack consequences,
 especially if ordinary operating system UDP-functionality is
 being used. It may be recommended not to open an ordinary UDP-port
 for this.
5.2 Tunnel Mode Conflict
 Implementors are warned that it is possible for remote peers to
 negotiate entries that overlap in a GW, an issue affecting tunnel
 mode.
 +----+ \ /
 | |-------------|----\
 +----+ / \ \
 Ari's NAT 1 \
 Laptop \
 10.1.2.3 \
 +----+ \ / \ +----+ +----+
 | |-------------|----------+------| |----------| |
 +----+ / \ +----+ +----+
 Bob's NAT 2 GW Suzy's
 Laptop Server
 10.1.2.3
 Because GW will now see two possible SAs that lead to 10.1.2.3, it
 can become confused where to send packets coming from Suzy's server.
 Implementators MUST devise ways of preventing such a thing from
 occurring.
 It is recommended that GW either assign locally unique IP addresses
 to A and B using a protocol such as DHCP over IPsec, or uses NAT to
 change A's and B's source IP addresses to such locally unique
 addresses before sending packets forward to S.
5.3 Transport Mode Conflict
 Another similar issue may occur in transport mode, with 2 clients,
 Ari and Bob, behind the same NAT talking securely to the same server.
 Cliff wants to talk in the clear to the same server.
 +----+
 | |
 +----+ \
 Ari's \
 Laptop \
 10.1.2.3 \
 +----+ \ / +----+
 | |-----+-----------------| |
 +----+ / \ +----+
 Bob's NAT Server
 Laptop /
 10.1.2.4 /
 /
 +----+ /
 | |/
 +----+
 Cliff's
 Laptop
 10.1.2.5
 Now, transport SAs on the server will look like:
 To Ari: S to NAT, <traffic desc1>, UDP encap <4500, Y>
 To Bob: S to NAT, <traffic desc2>, UDP encap <4500, Z>
 Cliff's traffic is in the clear, so there is no SA.
 <traffic desc> is the protocol and port information.
 The UDP encap ports are the ports used in UDP encapsulated
 ESP format of section 2.1. Y,Z are the dynamic ports assigned
 by the NAT during the IKE negotiation. So IKE traffic from
 Ari's laptop goes out on UDP <4500,4500>. It reaches the server
 as UDP <Y,4500>, where Y is the dynamically assigned port.
 If the <traffic desc1> overlaps <traffic desc2>, then
 simple filter lookups may not be sufficient to determine
 which SA needs to be used to send traffic. Implementations
 MUST handle this situation, either by disallowing
 conflicting connections, or by other means.
 Assume now that Cliff wants to connect to the server S in the
 clear. This is going to be difficult to configure since
 the server already has a policy from S to the NAT's external
 address, for securing <traffic desc>. For totally non-overlapping
 traffic descriptions, this is possible.
 Sample server policy could be:
 To Ari: S to NAT, All UDP, secure
 To Bob: S to NAT, All TCP, secure
 To Cliff: S to NAT, ALL ICMP, clear text
 Note, this policy also lets Ari and Bob send cleartext ICMP to the
 server.
 The server sees all clients behind the NAT as the same IP address,
 so setting up different policies for the same traffic descriptor
 is in principle impossible.
 A problematic example configuration on the server is:
 S to NAT, TCP, secure (for Ari and Bob)
 S to NAT, TCP, clear (for Cliff)
 The problem is that the server cannot enforce his policy, since it
 is possible that misbehaving Bob sends traffic in the clear. This
 is indistinguishable from Cliff sending traffic in the clear.
 So it is impossible to guarantee security from some clients behind
 a NAT, and also allow clear text from different clients behind the
 SAME NAT. If the server's security policy allows, however, it can
 do best effort security: if the client from behind the NAT
 initiates security, his connection will be secured. If he sends
 in the clear, the server will still accept that clear text.
 So, for security guarantees, the above problematic scenario MUST NOT
 be allowed on servers. For best effort security, this scenario MAY
 be used.
6. IANA Considerations
This document depends on the reserved SPI value of zero (0) not
being sent over the wire as a part of an ESP-packet [RFC 2406].
This document defines a "Non-ESP Marker" as 4 bytes of zero aligning
with the SPI field of an ESP packet, and generally being followed
by something that is not an ESP packet.
With regard to NAT-traversal in IKEv1 case, the Non-ESP Marker is
being followed by an IKEv1 packet as specified in section 2.2.
7. Intellectual Property Rights
The IETF has been notified of intellectual property rights claimed in
regard to some or all of the specification contained in this document.
For more information consult the online list of claimed rights.
8. Acknowledgments
Thanks to Tero Kivinen and William Dixon who contributed actively
to this document.
Thanks to Joern Sierwald, Tamir Zegman, Tatu Ylonen and
Santeri Paavolainen who contributed to the previous drafts
about NAT traversal.
9. References
Normative references:
[RFC 768] Postel, J., "User Datagram Protocol", August 1980
[RFC 2406] Kent, S., "IP Encapsulating Security Payload (ESP)",
November 1998
[RFC 2409] D. Harkins, D. Carrel, "The Internet Key Exchange
(IKE)", November 1998
[Kiv04] Kivinen, T. et. al., draft-ietf-ipsec-nat-t-ike-04.txt,
"Negotiation of NAT-Traversal in the IKE", October 2002
Non-normative references:
[RFC 1122] R. Braden (Editor), "Requirements for Internet Hosts
-- Communication Layers", October 1989
[RFC-2119] Bradner, S., "Key words for use in RFCs to indicate
Requirement Levels", March 1997
[RFC 3193] Patel, B. et. al, "Securing L2TP using IPsec",
November 2001
10. Authors' Addresses
 Ari Huttunen
 F-Secure Corporation
 Tammasaarenkatu 7
 FIN-00181 HELSINKI
 Finland
 E-mail: Ari.Huttunen@F-Secure.com
 Brian Swander
 Microsoft
 One Microsoft Way
 Redmond WA 98052
 E-mail: briansw@microsoft.com
 Markus Stenberg
 SSH Communications Security Corp
 Fredrikinkatu 42
 FIN-00100 HELSINKI
 Finland
 E-mail: mstenber@ssh.com
 Victor Volpe
 Cisco Systems
 124 Grove Street
 Suite 205
 Franklin, MA 02038
 E-mail: vvolpe@cisco.com
 Larry DiBurro
 Nortel Networks
 80 Central Street
 Boxborough, MA 01719
 ldiburro@nortelnetworks.com
Appendix A: Clarification of potential NAT multiple client solutions
There have been requests to clarify potential solutions to the problem
of multiple clients behind the same NAT simultaneously connecting to the
same destination IP address.
Sections 5.2 and 5.3 say that you MUST avoid this
problem. As this isn't a wire protocol matter, but a local
implementation matter, specification of the mechanisms do not belong in
the draft itself. They are instead listed in this appendix.
Choosing an option will likely depend on the scenarios for which you
use/support IPsec NAT-T. This list is not meant to be exhaustive, so
other solutions may exist. We first describe the generic choices that
solve the problem for all upper layer protocols.
Generic choices for ESP transport mode:
Tr1) Implement a built-in NAT (network address translation) above IPsec
decapsulation. SSH may have intellectual property rights relating to
this implementation technique. See their IPR notice on the IETF web
site for the details.
Tr2) Implement a built-in NAPT (network address port translation) above
IPsec decapsulation. Microsoft may have intellectual property rights
relating to this implementation technique. See the Microsoft IPR notice
on the IETF web site for the details.
Tr3) An initiator may decide not to request transport mode once NAT is
detected and instead request a tunnel mode SA. This may be a retry
after transport mode is denied by the responder, or it may be the
initiator's choice to propose a tunnel SA initially. This is no more
difficult than knowing whether to propose transport mode or tunnel mode
without NAT. If for some reason the responder prefers or requires
tunnel mode for NAT traversal, it must reject the quick mode SA proposal
for transport mode.
Generic choises for ESP tunnel mode:
Tn1) Same as Tr1.
Tn2) Same as Tr2.
Tn3) This option is possible if an initiator is capable of being assigned
an address through it's tunnel SA with the responder using DHCP. The
initiator may initially request an internal address via the DHCP-IPsec
method, regardless of whether it knows it is behind a NAT. Or it may
re-initiate an IKE quick mode negotiation for DHCP tunnel SA after the
responder fails the quick mode SA transport mode proposal, either when
NAT-OA payload is sent or because it discovers from NAT-D the initiator
is behind a NAT and it's local configuration/policy will only accept
connecting through NAT when being assigned an address through
DHCP-IPsec.
There are also implementation choices offereing limited
interoperability. Vendors should specify what applications or
protocols should work using their NAT-T solution if these options
are selected. Note that neither Tr4 nor Tn4 are expected to work
with TCP traffic.
Limited interoperability choices for ESP transport mode:
Tr4) Implement upper layer protocol awareness of the inbound & outbound
IPsec SA so that it doesn't use the source IP and the source port as the
session identifier. (E.g. L2TP session ID mapped to the IPsec SA pair
which doesn't use the UDP source port or the source IP address for peer
uniqueness.)
Tr5) Implement application integration with IKE initiation such that it
can rebind to a different source port if the IKE quick mode SA proposal
is rejected by the responder, then repropose the new QM selector.
Microsoft may have intellectual property rights relating to this
implementation technique. See the Microsoft IPR notice on the IETF web
site for the details.
Limited interoperability choices for ESP tunnel mode:
Tn4) Same as Tr4.

AltStyle によって変換されたページ (->オリジナル) /