CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-366: Race Condition within a Thread (4.18)
ID

CWE Glossary Definition

CWE-366: Race Condition within a Thread

Weakness ID: 366
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


Description
If two threads of execution use a resource simultaneously, there exists the possibility that resources may be used while invalid, in turn making the state of execution undefined.
Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Alter Execution Logic; Unexpected State

Scope: Integrity, Other

The main problem is that -- if a lock is overcome -- data could be altered in a bad state.
Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Use locking functionality. This is the recommended solution. Implement some form of locking mechanism around code which alters or reads persistent data in a multithreaded environment.

Architecture and Design

Create resource-locking validation checks. If no inherent locking mechanisms exist, use flags and signals to enforce your own blocking scheme when resources are being used by other threads of execution.
Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 362 Concurrent Execution using Shared Resource with Improper Synchronization ('Race Condition')
Relevant to the view "Software Development" (View-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 557 Concurrency Issues
Relevant to the view "CISQ Quality Measures (2020)" (View-1305)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
Relevant to the view "CISQ Data Protection Measures" (View-1340)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 662 Improper Synchronization
Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

Java (Undetermined Prevalence)

C# (Undetermined Prevalence)

Likelihood Of Exploit
Medium
Demonstrative Examples

Example 1


The following example demonstrates the weakness.

(bad code)
Example Language: C
int foo = 0;
int storenum(int num) {
static int counter = 0;
counter++;
if (num > foo) foo = num;
return foo;
}
(bad code)
Example Language: Java
public classRace {
static int foo = 0;
public static void main() {

new Threader().start();
foo = 1;
}
public static class Threader extends Thread {

public void run() {
System.out.println(foo);
}
}
}


Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Chain: two threads in a web browser use the same resource (CWE-366), but one of those threads can destroy the resource before the other has completed (CWE-416).
Detection Methods
Method Details

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

Affected Resources
  • System Process
Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 748 CERT C Secure Coding Standard (2008) Appendix - POSIX (POS)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 852 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 9 - Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 882 CERT C++ Secure Coding Section 14 - Concurrency (CON)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 986 SFP Secondary Cluster: Missing Lock
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1142 SEI CERT Oracle Secure Coding Standard for Java - Guidelines 08. Visibility and Atomicity (VNA)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1169 SEI CERT C Coding Standard - Guidelines 14. Concurrency (CON)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
Vulnerability Mapping Notes
Usage ALLOWED
(this CWE ID may be used to map to real-world vulnerabilities)
Reason Acceptable-Use

Rationale

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Race condition within a thread
CERT C Secure Coding CON32-C CWE More Abstract Prevent data races when accessing bit-fields from multiple threads
CERT C Secure Coding CON40-C CWE More Abstract Do not refer to an atomic variable twice in an expression
CERT C Secure Coding CON43-C Exact Do not allow data races in multithreaded code
The CERT Oracle Secure Coding Standard for Java (2011) VNA02-J Ensure that compound operations on shared variables are atomic
The CERT Oracle Secure Coding Standard for Java (2011) VNA03-J Do not assume that a group of calls to independently atomic methods is atomic
Software Fault Patterns SFP19 Missing Lock
References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005.
<https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. (URL validated: 2024年11月17日)
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 13: Race Conditions." Page 205. McGraw-Hill. 2010.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 13, "Race Conditions", Page 759. 1st Edition. Addison Wesley. 2006.
Content History
Submissions
Submission Date Submitter Organization
2006年07月19日
(CWE Draft 3, 2006年07月19日)
CLASP
Modifications
Modification Date Modifier Organization
2023年10月26日 CWE Content Team MITRE
updated Observed_Examples
2023年06月29日 CWE Content Team MITRE
updated Mapping_Notes
2023年04月27日 CWE Content Team MITRE
updated Detection_Factors, Relationships, Time_of_Introduction
2022年04月28日 CWE Content Team MITRE
updated Relationships
2021年03月15日 CWE Content Team MITRE
updated Potential_Mitigations
2020年12月10日 CWE Content Team MITRE
updated Relationships
2020年08月20日 CWE Content Team MITRE
updated Relationships
2020年02月24日 CWE Content Team MITRE
updated References, Relationships
2019年01月03日 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017年11月08日 CWE Content Team MITRE
updated Demonstrative_Examples, Relationships, Taxonomy_Mappings
2014年07月30日 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012年05月11日 CWE Content Team MITRE
updated References, Relationships
2011年09月13日 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2011年06月27日 CWE Content Team MITRE
updated Common_Consequences
2011年06月01日 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2010年09月27日 CWE Content Team MITRE
updated Potential_Mitigations, Relationships
2008年11月24日 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2008年09月08日 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Relationships, Taxonomy_Mappings
2008年07月01日 Eric Dalci Cigital
updated Time_of_Introduction
More information is available — Please edit the custom filter or select a different filter.
Page Last Updated: September 09, 2025

Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.

AltStyle によって変換されたページ (->オリジナル) /