When input does not comply with the expected type, attackers could trigger unexpected errors, cause incorrect actions to take place, or exploit latent vulnerabilities that would not be possible if the input conformed with the expected type.
This weakness can appear in type-unsafe programming languages, or in programming languages that support casting or conversion of an input to another type.
| Impact | Details |
|---|---|
|
Varies by Context |
Scope: Other |
| Phase(s) | Mitigation |
|---|---|
|
Implementation |
Strategy: Input Validation Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does. When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue." Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright. Effectiveness: High |
| Nature | Type | ID | Name |
|---|---|---|---|
| ChildOf | Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. | 20 | Improper Input Validation |
| PeerOf | Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. | 843 | Access of Resource Using Incompatible Type ('Type Confusion') |
| Phase | Note |
|---|---|
| Implementation |
Class: Not Language-Specific (Often Prevalent)
Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
| Reference | Description |
|---|---|
|
SQL injection through an ID that was supposed to be numeric.
|
| Nature | Type | ID | Name |
|---|---|---|---|
| MemberOf | CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. | 1406 | Comprehensive Categorization: Improper Input Validation |
Rationale
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.Comments
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.Maintenance
| Submissions | ||
|---|---|---|
| Submission Date | Submitter | Organization |
|
2020年06月24日
(CWE 4.1, 2020年02月24日) |
CWE Content Team | MITRE |
| Modifications | ||
| Modification Date | Modifier | Organization |
|
2024年07月16日
(CWE 4.15, 2024年07月16日) |
CWE Content Team | MITRE |
| updated Observed_Examples | ||
| 2023年06月29日 | CWE Content Team | MITRE |
| updated Mapping_Notes | ||
| 2023年04月27日 | CWE Content Team | MITRE |
| updated Relationships | ||
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation.