2
\$\begingroup\$

I am using Merton default model with complex iterative approach.

I have already prepared my R codes but as I am quite new in R, they seem very inefficient, in sense that they runs almost 7 hours. My main problem is my for loop part.

I kindly ask you review my R codes and give any corrections which could make my R code more efficient i.e. they run less time.

I downloaded all data and R code here.

library(plyr)
library(nleqslv)
library(data.table)
library(zoo)
library(TTR)
df5<-read.table(file="df5final.txt", sep="\t", header=T)
df5<-df5[,-8]
NONA <- function(data, columns) {
 completeVec <- complete.cases(data[, columns])
 return(data[completeVec, ])
}
head(df5)
df5<-NONA(df5,9)
nrow(df5)
freq<-ddply(df5, .(id,BSheetyearlag), "nrow")
df5<-join(df5, freq, by=c("id","BSheetyearlag"))
nrow(df5)
df5<-subset(df5, !nrow < 250)
df5<-subset(df5 , !nrow > 260)
unique(df5$nrow)
nrow(df5)
df5$logret<-log(1+df5$ret)
df5<-as.data.table(df5)
head(df5, n=25)
df5$year<-format(as.Date(df5$date, "%d-%b-%y"), "%Y")
df5$year<-as.numeric(df5$year)
####annual risk free rate
df5$convert<-as.Date(paste("1",df5$BSheetyearlag,sep=""),
 format="%d %b %Y")
df5$year<-format(df5$convert, "%Y")
rfabsolyear<-read.table(file="riskfreeannual.txt", sep="\t", header=T)
head(rfabsolyear)
tail(df5,n=2)
rfabsolyear<-rfabsolyear[,-2]
library(plyr)
df5<-join(df5, rfabsolyear, by=c("year"))
sp500<-read.table(file="spdata.txt", sep="\t", header=T)
colnames(sp500)<-c("date", "price", "retsp")
sp500<-na.omit(sp500)
sp500$date<-format(as.Date(sp500$date, "%d-%b-%y"), "%d-%b-%y")
head(df5,n=20)
sp500<-na.omit(sp500)
df5<-join(df5, sp500, by=c("date"))
head(df5)
blackscholes <- function(S, X, rf, h, sigma) {
 d1 <- (log(S/X)+(rf+sigma^2/2)*h)/sigma*sqrt(h)
}
df5<-subset(df5, ! LTD %in% NA )
df5<-subset(df5, ! STD %in% NA )
df5<-subset(df5, ! LTD %in% 0 )
df5<-subset(df5, ! cap %in% 0 )
df5<-subset(df5, ! STD %in% -882 )
df5$cap<-df5$cap/1000
df5<-within(df5, LTD05<-df5$STD+0.5*df5$LTD)
nrow(df5)
df5<-within(df5, iterK<-df5$LTD05+df5$cap)
df5$logiterK<-log(df5$iterK)
df5<-as.data.table(df5)
df5[,rollsd:=rollapply(logret, 250, sd, fill = NA, align='right')*sqrt(250), by=c("id", "BSheetyearlag")]
df5[,assetreturn:=c(NA,diff(logiterK)),by=c("id", "BSheetyearlag")] 
df5[,rollsdasset:=rollapply(assetreturn, 249, sd, fill=NA, align='right')*sqrt(250), by=c("id", "BSheetyearlag")]
df5[,iterK1:=(cap+LTD05*exp(-rfabsol)*pnorm(blackscholes(iterK,LTD05,rfabsol, 1,rollsdasset[250]))-rollsdasset[250])/pnorm(blackscholes(iterK,LTD05,rfabsol, 1,rollsdasset[250])),by=c("id", "BSheetyearlag")] 
head(df5, n=254)
errors<-ddply( df5, .(id, BSheetyearlag), function(x) sum((x$iterK-x$iterK1)^2))
head(errors)
df5<-as.data.frame(df5)
nrow(df5)
head(df5)
df5<-join(df5, errors, by=c("id", "BSheetyearlag"))
df5<-as.data.table(df5)
for ( i in 1:nrow(errors)){
 while(errors$V1[i] >= 10^(-10)) {
 df5<-as.data.table(df5)
 df5[,iterK:= iterK1,by=c("id", "BSheetyearlag")] 
 df5[,assetreturn:=c(NA,diff(log(iterK))),by=c("id", "BSheetyearlag")] 
 df5[,rollsdasset:=rollapply(assetreturn, 249, sd, fill=NA, align='right')*sqrt(250), by=c("id", "BSheetyearlag")]
 df5[,iterK1:=(cap+LTD05*exp(-rfabsol)*pnorm(blackscholes(iterK,LTD05,rfabsol, 1,rollsdasset[250]))-rollsdasset[250])/pnorm(blackscholes(iterK,LTD05,rfabsol, 1,rollsdasset[250])),by=c("id", "BSheetyearlag")]
 df5<-as.data.frame(df5)
 errors$V1[i]<-sum((df5[df5$V1 %in% errors$V1[i],"iterK"]-df5[df5$V1 %in% errors$V1[i],"iterK1"])^2)
 }
}
janos
113k15 gold badges154 silver badges396 bronze badges
asked May 8, 2014 at 20:34
\$\endgroup\$
1

0

Know someone who can answer? Share a link to this question via email, Twitter, or Facebook.

Your Answer

Draft saved
Draft discarded

Sign up or log in

Sign up using Google
Sign up using Email and Password

Post as a guest

Required, but never shown

Post as a guest

Required, but never shown

By clicking "Post Your Answer", you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.