Here is a python function I wrote to implement the Newton method for optimization for the case where you are trying to optimize a function that takes a vector input and gives a scalar output. I use numdifftools to approximate the hessian and the gradient of the given function then perform the newton method iteration.
import numpy as np
import numdifftools as nd
class multivariate_newton(object):
def __init__(self,func,start_point,step_size=0.8,num_iter=100,tol=0.000001):
'''
func: function to be optimized. Takes a vector argument as input and returns
a scalar output
step_size: step size in newton method update step
num_iter: number of iterations for newton method to run
tol: tolerance to determine convergence
'''
self.func=func
self.start_point=np.array(start_point)
self.num_iter=num_iter
self.step_size=step_size
self.tol=tol
def newton_method(self):
'''
perform multivariate newton method for function with vector input
and scalar output
'''
x_t=self.start_point
#Get an approximation to hessian of function
H=nd.Hessian(self.func)
#Get an approximation of Gradient of function
g=nd.Gradient(self.func)
for i in range(self.num_iter):
x_tplus1=x_t-self.step_size*np.dot(np.linalg.inv(H(x_t)),g(x_t))
#check for convergence
if abs(max(x_tplus1-x_t))<self.tol:
break
x_t=x_tplus1
self.crit_point=x_tplus1
self.max_min=self.func(x_t)
return self
def critical_point(self):
'''
print critical point found in newton_method function. newton_method function
must be called first.
'''
print self.crit_point
1 Answer 1
Pathological cases exist where Newton's method will not converge on a solution. Yet, there is no obvious way for the caller to tell whether convergence was achieved. You should distinguish between whether the loop terminated via the break
(success) or by exhaustion of the loop condition (failure).
for _ in range(self.num_iter):
x_tplus1 = x_t - self.step_size * np.dot(np.linalg.inv(H(x_t)), g(x_t))
#check for convergence
if abs(max(x_tplus1-x_t))<self.tol:
break
x_t = x_tplus1
else:
raise SolutionNotFound, "No convergence after %d iterations" % (self.num_iter)
Explore related questions
See similar questions with these tags.
scipy.optimize
? \$\endgroup\$