I made a module called "matrix-py" in python to add, subtract, multiply, transpose matrices
I want to know how to improve the code quality and if there's something wrong about my code
here's the code on github: https://github.com/FaresAhmedb/matrix-py
#!/usr/bin/python3
"""Matrix Manipulation module to add, substract, multiply matrices.
Copyright (C) 2021 Fares Ahmed
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
"""
# pylint: disable=C0103 # Variable name "m" is "iNvAlId-nAmE"
import argparse
import json
name = 'matrixmanp'
__version__ = '0.1'
__all__ = ['Matrix']
class MatrixError(Exception):
"""Error for the Matrix Object invalid operations"""
class Matrix:
"""Matrix Object: add, sub, mul, and a lot more"""
# Object Creation: START
def __init__(self, matrix) -> None:
"""Initialize matrix object."""
self.matrix = matrix
def __str__(self, dims=True):
"""Return the Matrix, the size of it (Activated when using print)"""
for row in self.matrix:
print(' '.join(map(str,row)))
if dims:
return self.__repr__()
return ''
def __repr__(self):
"""Return the matrix size (string representation of the object)"""
return '({}x{})'.format(len(self.matrix), len(self.matrix[0]))
# Object Creation: END
# Object Expressions: START
def __pos__(self):
"""Positive operator: +A | Return the matrix * 1 (copy)"""
result = list()
for i in range(len(self.matrix)):
result.append([])
for m in range(len(self.matrix[0])):
result[i].append(+self.matrix[i][m])
return Matrix(result)
def __neg__(self):
"""Negative operator: -A. | Returns the matrix * -1"""
result = list()
for i in range(len(self.matrix)):
result.append([])
for m in range(len(self.matrix[0])):
result[i].append(-self.matrix[i][m])
return Matrix(result)
# Object Expressions: END
# Object Math operations: START
def __add__(self, other):
"""Matrix Addition: A + B or A + INT."""
if isinstance(other, Matrix):
# A + B
result = list()
if (len(self.matrix) != len(other.matrix) or
len(self.matrix[0]) != len(other.matrix[0])):
raise MatrixError('To add matrices, the matrices must have'
' the same dimensions')
for m in range(len(self.matrix)):
result.append([])
for j in range(len(self.matrix[0])):
result[m].append(self.matrix[m][j] + other.matrix[m][j])
else:
# A + INT
result = list()
for m in range(len(self.matrix)):
result.append([])
for i in range(len(self.matrix[0])):
result[m].append(self.matrix[m][i] + other)
return Matrix(result)
def __sub__(self, other):
"""Matrix Subtraction: A - B or A - INT."""
if isinstance(other, Matrix):
# A + B
result = list()
if (len(self.matrix) != len(other.matrix) or
len(self.matrix[0]) != len(other.matrix[0])):
raise MatrixError('To sub matrices, the matrices must have'
' the same dimensions')
for m in range(len(self.matrix)):
result.append([])
for j in range(len(self.matrix[0])):
result[m].append(self.matrix[m][j] - other.matrix[m][j])
else:
# A + INT
result = list()
for m in range(len(self.matrix)):
result.append([])
for i in range(len(self.matrix[0])):
result[m].append(self.matrix[m][i] - other)
return Matrix(result)
def __mul__(self, other):
"""Matrix Multiplication: A * B or A * INT."""
if isinstance(other, Matrix):
# A * B
if len(self.matrix[0]) != len(other.matrix):
raise MatrixError('The number of rows in matrix A must be'
' equal to the number of columns in B matrix')
# References:
# https://www.geeksforgeeks.org/python-program-multiply-two-matrices
result = [[sum(a * b for a, b in zip(A_row, B_col))
for B_col in zip(*other.matrix)]
for A_row in self.matrix]
else:
# A * INT
result = list()
for m in range(len(self.matrix)):
result.append([])
for i in range(len(self.matrix[0])):
result[m].append(self.matrix[m][i] * other)
return Matrix(result)
# Object Math opertaions: END
# Object Manpulation: START
def transpose(self: list):
"""Return a new matrix transposed"""
result = [list(i) for i in zip(*self.matrix)]
return Matrix(result)
def to_list(self):
"""Convert Matrix object to a list"""
return self.matrix
# Object Manpulation: END
def main():
"""The CLI for the module"""
parser=argparse.ArgumentParser(
description = 'Matrix Minuplation module to add, substract, multiply'
'matrices.',
epilog = 'Usage: .. -ma "[[1, 2, 3], [4, 5, 6]]" -op "+" -mb'
' "[[7, 8, 9], [10, 11, 12]]"')
parser.add_argument('-v', '--version',
action="version",
version=__version__,
)
parser.add_argument('-s', '--size',
type=json.loads,
metavar='',
help='Size of A Matrix'
)
parser.add_argument('-t', '--transpose',
type=json.loads,
metavar='',
help='Transpose of A Matrix (-t "[[1, 2, 3], [4, 5, 6]]")'
)
parser.add_argument('-ma', '--matrixa',
type=json.loads,
metavar='',
help='Matrix A (.. -ma "[[1, 2, 3], [4, 5, 6]]")'
)
parser.add_argument('-op', '--operator',
type=str,
metavar='',
help='Operator (.. -op "+", "-", "*")'
)
parser.add_argument('-mb', '--matrixb',
type=json.loads,
metavar='',
help='Matrix B (.. -mb "[[1, 2, 3], [4, 5, 6]]")'
)
parser.add_argument('-i', '--int',
type=int,
metavar='',
help='Integer (.. -i 69)'
)
args = parser.parse_args()
if args.size:
return Matrix(args.size)
elif args.transpose:
return Matrix(args.transpose).transpose()
elif args.matrixa:
if args.operator == '+':
print(Matrix(args.matrixa) + Matrix(args.matrixb)) \
if args.matrixb else \
print(Matrix(args.matrixa) + args.int)
elif args.operator == '-':
print(Matrix(args.matrixa) - Matrix(args.matrixb)) \
if args.matrixb else \
print(Matrix(args.matrixa) - args.int)
elif args.operator == '*':
print(Matrix(args.matrixa) * Matrix(args.matrixb)) \
if args.matrixb else \
print(Matrix(args.matrixa) * args.int)
else:
raise SyntaxError('The avillable operations are +, -, *')
else:
return parser.print_help()
if __name__ == '__main__':
main()
1 Answer 1
Interesting project, writing it python does come with some limitations. Numpy is mostly written in C and there are good reasons for it. The memory management is much better and most of the array-manipulation routines can be done in-place instead of copying back and forth. AFAIK, there is no equivalency for pure c-arrays in Python. A tuple
is probably the closest you can get.
The constructor is a void function and has one argument. You are specifying the return type but AFAIK the __init__
function must be a void, so there is really no point in specifying it. On the contrary, the argument has no type hinting. A matrix is a 2d array which needs to be a list or any other sequence type. You are building logic that assumes that self.matrix
is a list
type in other methods. So, it should be the other way around - specify the argument type but not the return type.
Using print
inside the __str__
method looks a bit strange, because python will look for this method when calling print(self)
.
In __repr__
you could use f-strings to format the string. But this might be a matter of taste.
The __pos__
does not actually do anything what I can see. If you want to copy the list, then there are built-in methods for doing so.
__neg__
Is just doing the unary -
operator on all elements in self.matrix
. You could set result
by doing:
result = [[-x for x in y] for y in self.matrix]
The binary operations are the most interesting. Generally, I try to avoid building any logic on static type inference, especially when writing programs on a high level. With that said, there are smart ways of doing it in python - Have a look at functools.singledispatch
. But I often feel that static type checking just convolutes the call stack, thus making it harder to traceback for the purpose of debugging. I prefer to leverage polymorphism and move any kind of type inference to the internal dispatcher. The only thing that differs between adding together two lists (or matrices) and adding a list
with an int
is that the list
needs to use indexing. You could make sure that the argument other
to __add__
is a Matrix
type and always use indexing like this:
self.matrix[m,j] + other.matrix[m,j]
This means that a matrix can also be an integer and the constructor will either take a list
or int
type as argument. To handle the cases for when you are indexing an integer (which doesn't really make sense), you need to overload the __getitem__
method for the Matrix
base class. It might look something like this:
def __getitem__(self, idx):
i, j = idx
return isinstance(self.matrix, int) and self.matrix or self.matrix[i][j]
But there might be better ways of doing it. You could for example use a custom iterator.
As a final note, subtraction can be implemented as a composition of multiplication and addition, because a - b <=> a + (b * -1)
. It is slightly more inefficient, but you would have to look at the assembly to draw any conclusions.
Explore related questions
See similar questions with these tags.
numpy
? \$\endgroup\$