As a side project, I'm working on a Bokeh web application to display public bikeshare data on a map. The data is updated every 2 minutes using a periodic callback. Below is the full implementation.
I'm using PyBikes to scrape the bike data. I'm interested in feedback on the use of good coding style/best practices. Also, I'm trying to learn about unit testing, but I'm unsure what kind of unit tests would be appropriate here. Any other comments on how this code could be improved are welcome as well.
import json
import math
import pybikes
from bokeh.io import curdoc
from bokeh.layouts import column
from bokeh.plotting import figure
from bokeh.tile_providers import get_provider, Vendors
from bokeh.models import GeoJSONDataSource, ColorBar, LinearColorMapper, Label
from bokeh.palettes import viridis
def latlon_to_mercator(lat, lon):
"""Converts latitude/longitude coordinates from decimal degrees to web mercator format.
Derived from the Java version shown here: http://wiki.openstreetmap.org/wiki/Mercator
Args:
lat: latitude in decimal degrees format.
lon: longitude in decimal degrees format.
Returns:
Latitude (y) and longitude (x) as floats.
"""
radius = 6378137.0
x = math.radians(lon) * radius
y = math.log(math.tan(math.radians(lat) / 2.0 + math.pi / 4.0)) * radius
return y, x
def color(percent_full):
"""Returns a color from the Viridis256 palette corresponding to how full a station is.
Args:
percent_full: A value between 0-1 indicating percent full status of a station
Returns:
Color from the Viridis256 palette as a hex code string
"""
idx = int(percent_full*255)
colors = viridis(256)
color = colors[idx]
return color
def gbfs_to_geojson(stations):
"""Converts General Bikeshare Feed Specification (GBFS) data to GeoJSON format.
Args:
stations: A list of GbfsStation objects.
Returns:
A json string containing GeoJSON-formatted data for each station
"""
geo_dict = {}
geo_dict['type'] = 'FeatureCollection'
geo_dict['features'] = []
for station in stations:
station_dict = {}
station.latitude, station.longitude = latlon_to_mercator(station.latitude, station.longitude)
if station.bikes == 0 and station.free == 0:
percent_full = 0
else:
percent_full = float(station.bikes)/float(station.bikes + station.free)
station_dict['geometry'] = {'type': 'Point', 'coordinates': [station.longitude, station.latitude]}
station_dict['type'] = 'Feature'
station_dict['id'] = station.extra['uid']
station_dict['properties'] = {'station name': station.name,
'bikes': station.bikes,
'free': station.free,
'color': color(percent_full),
'size': (station.free + station.bikes)*0.5}
geo_dict['features'].append(station_dict)
geo_json = json.dumps(geo_dict)
return geo_json
def get_data():
"""Pulls bikeshare data from the web using the Pybikes API.
Returns:
A json string containing GeoJSON-formatted data for each station
"""
capital = pybikes.get('capital-bikeshare')
capital.update()
stations = capital.stations
geo_data = gbfs_to_geojson(stations)
return geo_data
def make_map(source):
"""Creates a Bokeh figure displaying the source data on a map
Args:
source: A GeoJSONDataSource object containing bike data
Returns: A Bokeh figure with a map displaying the data
"""
tile_provider = get_provider(Vendors.STAMEN_TERRAIN_RETINA)
TOOLTIPS = [
('bikes available', '@bikes'),
]
p = figure(x_range=(-8596413.91, -8558195.48), y_range=(4724114.13, 4696902.60),
x_axis_type="mercator", y_axis_type="mercator", width=1200, height=700, tooltips=TOOLTIPS)
p.add_tile(tile_provider)
p.xaxis.visible = False
p.yaxis.visible = False
p.circle(x='x', y='y', size='size', color='color', alpha=0.7, source=source)
color_bar_palette = viridis(256)
color_mapper = LinearColorMapper(palette=color_bar_palette, low=0, high=100)
color_bar = ColorBar(color_mapper=color_mapper, background_fill_alpha=0.7, title='% Full',
title_text_align='left', title_standoff=10)
p.add_layout(color_bar)
label = Label(x=820, y=665, x_units='screen', y_units='screen',
text='Dot size represents total docks in station', render_mode='css',
border_line_color=None, background_fill_color='white', background_fill_alpha=0.7)
p.add_layout(label)
return p
def update():
geo_json = get_data()
source.update(geojson=geo_json)
source = get_data()
source = GeoJSONDataSource(geojson=source)
fig = make_map(source)
curdoc().add_root(column(fig))
curdoc().add_periodic_callback(update, 120000)
1 Answer 1
Documentation
The function docstrings are very helpful.
For the latlon_to_mercator
function, I suggest changing the word "decimal"
to "integer". I also recommend changing the generic y
and x
variable
names to lat_float
and lon_float
to better convey their meaning.
Simpler
This code in the color
function:
idx = int(percent_full*255)
colors = viridis(256)
color = colors[idx]
return color
is more simply written as:
colors = viridis(256)
return colors[int(percent_full*255)]
This eliminates the intermediate idx
and color
variables.
It also avoids using "color" as both the name of the function
and a variable. Consider renaming the function as get_color
to be more specific about the function's purpose.
Similar simplification can be done in the get_data
function with these lines:
stations = capital.stations
geo_data = gbfs_to_geojson(stations)
return geo_data
Use underscore characters to make large numeric literals easier to read and understand. For example, change:
120000
to:
120_000
Portability
The question uses the Python version 2.x tag, but that version is deprecated. Consider porting to 3.x.
Explore related questions
See similar questions with these tags.