I have the below code for a A* pathfinder, however it is taking upwards of 10 minutes to find a solution using a simple 1024 x 1024 array.
I had to comment out //Collections.sort(this.openList);
as it was throwing a comparison method violates its general contract!
error when running.
Is the algorithm correct and any idea why the bottleneck? Some people using C++ are getting a response time of 40ms, not 10+ mins!
import java.util.List;
import javax.imageio.ImageIO;
import java.awt.Canvas;
import java.awt.Color;
import java.awt.GraphicsConfiguration;
import java.awt.Paint;
import java.awt.image.BufferedImage;
import java.io.Console;
import java.io.File;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
class AStarPathfinding {
// Closed list, open list and calculatedPath lists
private final List<Node> openList;
private final List<Node> closedList;
private final List<Node> calcPath;
// Collision Map to store tha map in
private final int[][] collisionMap;
// Current node the program is executing
private Node currentNode;
// Define the start and end coords
private final int xstart;
private final int ystart;
private int xEnd, yEnd;
// Node class for convenience
static class Node implements Comparable {
public Node parent;
public int x, y;
public double g;
public double h;
Node(Node parent, int xpos, int ypos, double g, double h) {
this.parent = parent;
this.x = xpos;
this.y = ypos;
this.g = g;
this.h = h;
}
// Compare f value (g + h)
@Override
public int compareTo(Object o) {
Node that = (Node) o;
return (int)((this.g + this.h) - (that.g + that.h));
}
}
// construct and initialise
AStarPathfinding(int[][] collisionMap, int xstart, int ystart) {
this.openList = new ArrayList<>();
this.closedList = new ArrayList<>();
this.calcPath = new ArrayList<>();
this.collisionMap = collisionMap;
this.currentNode = new Node(null, xstart, ystart, 0, 0);
this.xstart = xstart;
this.ystart = ystart;
}
// returns a List<> of nodes to target
public List<Node> findPathTo(int xTo, int yTo) {
this.xEnd = xTo;
this.yEnd = yTo;
// Add this to the closed list
this.closedList.add(this.currentNode);
// Add neighbours to openList for iteration
addNeigborsToOpenList();
// Whilst not at our target
while (this.currentNode.x != this.xEnd || this.currentNode.y != this.yEnd) {
// If nothing in the open list then return with null - handled in error message in main calling func
if (this.openList.isEmpty()) {
return null;
}
// get the lowest f value and add it to the closed list, f calculated when neighbours are sorted
this.currentNode = this.openList.get(0);
this.openList.remove(0);
this.closedList.add(this.currentNode);
addNeigborsToOpenList();
}
// add this node to the calculated path
this.calcPath.add(0, this.currentNode);
while (this.currentNode.x != this.xstart || this.currentNode.y != this.ystart) {
this.currentNode = this.currentNode.parent;
this.calcPath.add(0, this.currentNode);
}
return this.calcPath;
}
// Searches the current list for neighbouring nodes returns bool
private static boolean checkNeighbourHasBeenSearched(List<Node> array, Node node) {
return array.stream().anyMatch((n) -> (n.x == node.x && n.y == node.y));
}
// Calculate distance from current node to the target
private double distance(int dx, int dy) {
return Math.hypot(this.currentNode.x + dx - this.xEnd, this.currentNode.y + dy - this.yEnd); // return hypothenuse
}
// Add neighbouring nodes to the open list to iterate through next
@SuppressWarnings("unchecked")
private void addNeigborsToOpenList() {
Node node;
for (int x = -1; x <= 1; x++) {
for (int y = -1; y <= 1; y++) {
node = new Node(this.currentNode, this.currentNode.x + x, this.currentNode.y + y, this.currentNode.g, this.distance(x, y));
// if we are not on the current node
if ((x != 0 || y != 0)
&& this.currentNode.x + x >= 0 && this.currentNode.x + x < this.collisionMap[0].length // check collision map boundaries
&& this.currentNode.y + y >= 0 && this.currentNode.y + y < this.collisionMap.length
&& this.collisionMap[this.currentNode.y + y][this.currentNode.x + x] != -1) { // check if tile is walkable (-1)
// and finally check we haven't already searched the nodes
if(!checkNeighbourHasBeenSearched(this.openList, node) && !checkNeighbourHasBeenSearched(this.closedList, node)){
node.g = node.parent.g + 1.; // Horizontal/vertical cost = 1.0
node.g += collisionMap[this.currentNode.y + y][this.currentNode.x + x]; // add movement cost for this square
// Add diagonal movement cost sqrt(hor_cost2 + vert_cost2) + 0.4
if (x != 0 && y != 0) {
node.g += .4;
}
// Add the node to the List<>
this.openList.add(node);
}
}
}
}
// sort in ascending order
//Collections.sort(this.openList);
}
public static void main(String[] args) {
// Define the size of the grid
final int sizeOf = 1024;
int[][] collisionMap = new int[sizeOf][];
for(int i=0;i < sizeOf; i++) {
// -1 = blocked
// 0+ = cost
collisionMap[i] = new int[sizeOf];
}
// set the value of the nodes
for (int k = 0; k < sizeOf; k++) {
for (int j = 0; j < sizeOf; j++) {
if(j == 0 && k < 100) {
collisionMap[k][j] = -1;
} else if (j == 50 && k > 230) {
collisionMap[k][j] = -1;
}else {
collisionMap[k][j] = 0;
}
}
}
AStarPathfinding as = new AStarPathfinding(collisionMap, 103, 300);
List<Node> path = as.findPathTo(0,0);
if(path == null) {
System.out.println("Unable to reach target");
}
// create image buffer to write output to
BufferedImage img = new BufferedImage(sizeOf, sizeOf, BufferedImage.TYPE_INT_RGB);
// Set colours
int r = 255;
int g = 0;
int b = 0;
int colRed = (r << 16) | (g << 8) | b;
r = 0;
g = 255;
b = 0;
int colGreen = (r << 16) | (g << 8) | b;
r = 0;
g = 0;
b = 255;
int colBlue = (r << 16) | (g << 8) | b;
r = 255;
g = 255;
b = 255;
int colWhite = (r << 16) | (g << 8) | b;
int i = 0;
int j = 0;
if (path != null) {
path.forEach((n) -> {
System.out.print("[" + n.x + ", " + n.y + "] ");
collisionMap[n.y][n.x] = 1;
});
System.out.printf("\nTotal cost: %.02f\n", path.get(path.size() - 1).g);
for (int[] maze_row : collisionMap) {
for (int maze_entry : maze_row) {
switch (maze_entry) {
// normal tile
case 0:
img.setRGB(j, i, colWhite);
break;
// final path
case 1:
img.setRGB(j, i, colBlue);
break;
// Object to avoid
case -1:
img.setRGB(j, i, colRed);
break;
// Any other value
default:
img.setRGB(j, i, colGreen);
}
j++;
}
// count j - reset as if it were a for loop
if(i != sizeOf-1) {
j=0;
}
i++;
System.out.println();
}
}
// output file
File f = new File("aStarPath.png");
try {
ImageIO.write(img, "PNG", f);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
System.out.println("i: " + i + ", j: " + j);
}
}
2 Answers 2
Single Responsibility
your code is a little bit*) monolithic, you try to do all in one class
- creating a map
- calculating path
- drawing images
this makes it really hard to understand your code! it would greatly improve readability if you would split your code into proper classes
*) honestly: the whole code is just ONE BIG monolith
programm flaws
you have already identified the source of your problems, it happens here
// get the lowest f value and add it to the closed list, f calculated when neighbours are sorted
this.currentNode = this.openList.get(0);
this does not work because you do not sort the list by the f-value, as already declared in your question. But that part is essential to have an optimized path-finding algorithm, and that is why you have performance issues. See this answer for some more hints on how to sort a list according to custom properties.
instead of following your heuristic you now have programmed a Flood-Fill-Algorithm that will inspect all fields (untill it finds the lucky target one)
programm flaws 2
when you expand your node (addNeigborsToOpenList()
) and check the candidates, the algorithm says:
if the path (g) is better than any previous, then add it
but you don't check that condition:
node.g = node.parent.g + 1.; // Horizontal/vertical cost = 1.0
node.g += collisionMap[this.currentNode.y + y][this.currentNode.x + x]; // add movement cost for this square
// Add diagonal movement cost sqrt(hor_cost2 + vert_cost2) + 0.4
if (x != 0 && y != 0) {
node.g += .4;
}
// Add the node to the List <--WRONG HERE:
this.openList.add(node);
summary code flaws
These bugs in your code prevent the efficent execution of your astar search, if you solve them your code will gain the desired performance.
additional performance hints
on top of this if you would also apply the guidance from coderodde to optimize the new flawless code.
other issues
some very basic issues
- use a formatter and apply the java code style rules
- apply java naming conventions (e.g.
boolean checkNeighbourHasBeenSearched()
should be renamed intohasNeighbourHasBeenSearched()
) - primitive obseesion - why is
collisionMap
an array ofint
- should it not be an array ofField
where eachField
has the attributeisAccessable
- why do you suppress warnings when you could use proper data types (
@SuppressWarnings("unchecked")
)? - tell - don't ask (instead of writing comments give your methods proper names)
- magic numbers
Wrong data structures
First of all, your poor efficiency is due to the fact that you use array lists for the open and closed sets. Change the open set to PriorityQueue
and your closed set to HashSet
. In order to work, you will need to overwrite equals
, hashCode
and compareTo
for your class Node
.
If you don't mind "picking", you can find something relevant here (see AStarPathfinder.java).
Explore related questions
See similar questions with these tags.