I'm trying to learn some Scala and decided to try to tackle some Project Euler problems.
For problem #48, coming from a Python background, my solution is the following one-liner:
print ( (1 to 1000).map(i => BigInt(i).pow(i)).sum % BigInt(10).pow(10) )
Is this idiomatic? Is there a simpler/more readable solution?
2 Answers 2
Your solution is clean but doesn't scale well. A well known optimization for a^k mod m
is to perform all computations modulus m
. If m
is sufficiently small, we furthermore can switch to native types (this is not the case here !).
val n = 1000
val m = BigInt(10).pow(10)
(for (i <- 1 to n) yield BigInt(i).modPow(i,m)).sum % m
Rounded avarage timing results (Scala 2.9.1 with -optimize
) :
n 1000 | 10000
Initial solution 4.8 ms | 6700 ms
Fold left 4.8 ms | 6700 ms
My humble version 0.5 ms | 5 ms
Your solution is totally valid. Instead of xs.map(f).sum
it is possible to use xs.foldLeft(init)(f)
:
(1 to 1000).foldLeft(BigInt(0)) {
(sum, n) => sum+BigInt(n).pow(n)
}
// or with /: synonym for foldLeft
(BigInt(0) /: (1 to 1000)) {
(sum, n) => sum+BigInt(n).pow(n)
}
-
\$\begingroup\$ Thanks for you answer! Would using foldLeft be more efficient or is it just a matter of taste? Also, I didn't know at all the /: syntax for foldLeft. Seems a bit cryptic TBH... \$\endgroup\$jjt– jjt2012年09月28日 21:05:50 +00:00Commented Sep 28, 2012 at 21:05
-
1\$\begingroup\$
foldLeft
should be more efficient because it does both operations (map+sum) in a single step. Thus, there is no unnecessary creation of an intermediate collection (from map), which can be allayed with lazy collections (like.iterator
of.view
). But,foldLeft
should be more efficient, even with lazy collections. \$\endgroup\$kiritsuku– kiritsuku2012年09月28日 21:27:40 +00:00Commented Sep 28, 2012 at 21:27