3
\$\begingroup\$

I am writing a class to evaluate an arithmetic expression, For now my class can convert an infix expression into postfix, it doesn't support exponents yet.

 public class Evaluator {
 public Map<String, Operator> mOperators = new HashMap<>();
 public Evaluator() {
 addOperator(new Operator("+", 1) {
 @Override
 public BigDecimal eval(BigDecimal a, BigDecimal b) {
 return a.add(b);
 }
 });
 addOperator(new Operator("-", 1) {
 @Override
 public BigDecimal eval(BigDecimal a, BigDecimal b) {
 return a.subtract(b);
 }
 });
 addOperator(new Operator("*", 2) {
 @Override
 public BigDecimal eval(BigDecimal a, BigDecimal b) {
 return a.multiply(b);
 }
 });
 addOperator(new Operator("/", 2) {
 @Override
 public BigDecimal eval(BigDecimal a, BigDecimal b) {
 return a.divide(b);
 }
 });
 }
 public String toPostfix(String infix) {
 Stack<String> operators = new Stack<>();
 StringBuilder result = new StringBuilder();
 String[] tokens = infix.replaceAll("\\s+", "").split("(?<=[^.a-zA-Z\\d])|(?=[^.a-zA-Z\\d])");
 for (String token : tokens) {
 if (token.matches("-?\\d+(\\.\\d+)?")) {
 result.append(token).append(" ");
 } else if (operators.isEmpty() || operators.peek().equals("(") || token.equals("(")) {
 operators.push(token);
 } else if (token.equals(")")) {
 while (!operators.peek().equals("(")) {
 result.append(operators.pop()).append(" ");
 }
 operators.pop();
 } else {
 while (!operators.isEmpty() && precedence(operators.peek()) >= precedence(token)) {
 result.append(operators.pop()).append(" ");
 }
 operators.push(token);
 }
 }
 while (!operators.isEmpty()) {
 result.append(operators.pop()).append(" ");
 }
 return result.toString().trim();
 }
 public void addOperator(Operator operator) {
 mOperators.put(operator.getSymbol(), operator);
 }
 private int precedence(String token) {
 Operator operator = mOperators.getOrDefault(token, null);
 return operator == null ? -1 : operator.getPrecedence();
 }
 public abstract class Operator {
 private final String mSymbol;
 private final int mPrecedence;
 public Operator(String symbol, int precedence) {
 mSymbol = symbol;
 mPrecedence = precedence;
 }
 public abstract BigDecimal eval(BigDecimal a, BigDecimal b);
 public String getSymbol() {
 return mSymbol;
 }
 public int getPrecedence() {
 return mPrecedence;
 }
 }
}

My questions are:

  1. How to deal with negative number, e.g: (-1) + 2
  2. Is there any easier or better way to evaluate an arithmetic expression without having to turn it into postfix?
  3. What can I do to optimize my class and make it better?
asked Feb 23, 2017 at 14:52
\$\endgroup\$
1
  • 1
    \$\begingroup\$ Welcome to Code Review. Your question is fine, but I would remove the negative number question. We're here to review the current code, we're not coding new functionality. \$\endgroup\$ Commented Feb 23, 2017 at 15:19

2 Answers 2

1
\$\begingroup\$

The two most common approaches to evaluating simple mathematical expressions are :

  1. Parse the expression into an Abstract Syntax Tree, and then evaluate the tree.
  2. Process the expression using Dijkstra's Shunting-yard algorithm.
answered Mar 4, 2017 at 17:57
\$\endgroup\$
-1
\$\begingroup\$

Is there any reason to not use the great built-in expression evaluator: Nashorn Javascript Engine?

It can calculate for you all sorts of expressions supported by ES6. Example of usage (in Java 9):

@Test
public void calculate() throws ScriptException {
 String MATH_EXPR = "-1 + x * 2";
 Bindings bindings = new SimpleBindings( new HashMap<>( Map.of("x", 2) ) );
 Double result = (Double) jse.eval(MATH_EXPR, bindings);
 out.printf("x = %d, %s = %.1f%n", bindings.get("x"), MATH_EXPR, result);
 assertEquals( Double.valueOf(3.0), result );
}
answered Feb 24, 2017 at 1:07
\$\endgroup\$

Your Answer

Draft saved
Draft discarded

Sign up or log in

Sign up using Google
Sign up using Email and Password

Post as a guest

Required, but never shown

Post as a guest

Required, but never shown

By clicking "Post Your Answer", you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.