From the section called Nested Mappings
Exercise 2.40
Define a procedure unique-pairs that, given an integer
n
, generates the sequence of pairs (i
,j
) with1 < j < i < n
. Use unique-pairs to simplify the definition of prime-sum-pairs given above.
I wrote the following:
(define (prime-sum-pairs n)
(filter (lambda (seq)
(prime? (+ (car seq) (cadr seq))))
(unique-pairs n)))
(define (enumerate-integers start end)
(if (>= start end)
(list end)
(cons start (enumerate-integers (+ 1 start) end))))
(define (unique-pairs n)
(flat-map (lambda (i)
(map (lambda (j) (list i j))
(enumerate-integers 1 (- i 1))))
(enumerate-integers 2 n)))
(define (filter test-fn seq)
(if (null? seq) null
(if (test-fn (car seq))
(cons (car seq)
(filter test-fn (cdr seq)))
(filter test-fn (cdr seq)))))
(define (accumulate op initial seq)
(if (null? seq)
initial
(op (car seq)
(accumulate op initial (cdr seq)))))
(define (flat-map f seq)
(accumulate append
null
(map (lambda (x) (f x)) seq)))
(define (prime? n) (= (smallest-divisor n) n))
(define (divisible? n i) (= 0 (remainder n i)))
(define (square x) (* x x))
(define (smallest-divisor n)
(define (rec i)
(cond ((> n (square i)) n)
((divisible? n i) i)
(else (rec (+ 1 i)))))
(rec 2))
Can this be improved in any way?
1 Answer 1
Your code
(define (enumerate-integers start end)
(if (>= start end)
(list end)
(cons start (enumerate-integers (+ 1 start) end))))
(define (unique-pairs n)
(flat-map (lambda (i)
(map (lambda (j) (list i j))
(enumerate-integers 1 (- i 1))))
(enumerate-integers 2 n)))
looks fine to me. If you want to massage some details, you could rewrite enumerate-integers e.g. to:
(define (enumerate-integers start end)
(if (> start end) '()
(cons start (enumerate-integers (+ 1 start) end))))
which is cleaner because you don't have (list end) as a special case, and you can correctly produce an empty list of integers if start> end.
If you want to be even cleaner, you can do:
(define (enumerate-integers start end)
(define (iter n)
(if (> n end) '()
(cons n (iter (+ n 1)))))
(iter start))
This is a good pattern in case of more complex procedures.
Your flat-map is more complex than needed, your code:
(define (flat-map f seq)
(accumulate append
null
(map (lambda (x) (f x)) seq)))
can be replaced with:
(define (flat-map f seq)
(accumulate append
null
(map f seq)))
because (lambda (x) (f x)) is equal to f.