inspired by Count down from infinity
Given a non-negative integer N
, output the number of repetitions of the following steps it takes to reach 0:
- Convert
N
to binary (4812390 -> 10010010110111001100110
) - Flip each bit (
10010010110111001100110 -> 01101101001000110011001
) - Trim leading zeroes (
01101101001000110011001 -> 1101101001000110011001
) - Convert back to decimal (
1101101001000110011001 -> 3576217
)
Rules
- Input and output may be in any unambiguous, consistent format
- The input will be within the native representable integer range for your language (if your language supports arbitrarily-large integers, there is no bound)
Test Cases
0 -> 0
1 -> 1
42 -> 6
97 -> 3
170 -> 8
255 -> 1
682 -> 10
8675309 -> 11
4812390 -> 14
178956970 -> 28
2863311530 -> 32
This sequence is A005811 in the OEIS.
31 Answers 31
Jelly, (削除) 6 (削除ここまで) 4 bytes
^HBS
Try it online! or verify all test cases.
Background
Let n be a non-negative integer.
Steps 2 and 3 of the process described in the spec can alternatively be stated as removing all leading 1's and toggling the remaining bits.
This means that we'll remove exactly one group of adjacent and equal binary digits in each iteration, so the Binary Countdown Length of n is just the number of these groups in the binary representation of n. For the purposes of this challenge, think of 0 as having no digits.
For n = 8675309, the process looks as follows in binary.
100001000101111111101101
11110111010000000010010
1000101111111101101
111010000000010010
101111111101101
10000000010010
1111111101101
10010
1101
10
1
0
Instead of counting these groups (which would fail for edge case 0), we do the following.
n and n:2 have the following binary representations.
n = 8675309 =わ 100001000101111111101101_2
n:2 =わ 4337654 =わ 10000100010111111110110_2
Note that n:2's binary representation is simply n's, shifted one bit to the left.
If we XOR n and n:2, we'll obtain a 1 (MSB), and an additional 1 for each pair of different adjacent digits. The number of groups is thus equal to the number of set bits in n ⊻ n:2.
How it works
^HBS Main link. Argument: n
H Halve; yield n:2.
^ XOR n with n:2.
B Convert the result to binary.
S Compute the sum of the resulting binary digits.
-
2\$\begingroup\$ Amazing! A totally different reasoning \$\endgroup\$edc65– edc652016年11月03日 07:53:50 +00:00Commented Nov 3, 2016 at 7:53
Python 2, 30 bytes
lambda n:bin(n^n/2).count('1')
Test it on Ideone.
Background
Let n be a non-negative integer.
Steps 2 and 3 of the process described in the spec can alternatively be stated as removing all leading 1's and toggling the remaining bits.
This means that we'll remove exactly one group of adjacent and equal binary digits in each iteration, so the Binary Countdown Length of n is just the number of these groups in the binary representation of n. For the purposes of this challenge, think of 0 as having no digits.
For n = 8675309, the process looks as follows in binary.
100001000101111111101101
11110111010000000010010
1000101111111101101
111010000000010010
101111111101101
10000000010010
1111111101101
10010
1101
10
1
0
Instead of counting these groups (which would fail for edge case 0), we do the following.
n and n:2 have the following binary representations.
n = 8675309 =わ 100001000101111111101101_2
n:2 =わ 4337654 =わ 10000100010111111110110_2
Note that n:2's binary representation is simply n's, shifted one bit to the left.
If we XOR n and n:2, we'll obtain a 1 (MSB), and an additional 1 for each pair of different adjacent digits. The number of groups is thus equal to the number of set bits in n ⊻ n:2.
Python 2, 29 bytes
f=lambda n:n and-n%4/2+f(n/2)
Counts the number of alternations between 0 and 1 in the binary expansion, counting the leading 1 as an alternation. Does so by checking whether the last two binary digits are different, then recursing onto the number with the last digit removed. The last two digits are different exactly if n%4
is 1 or 2, which can be checked as -n%4/2
.
Haskell, 34 bytes
b 0=0
b n|x<-b$div n 2=x+mod(x+n)2
-
\$\begingroup\$ I like how it says "0=0" :) \$\endgroup\$AlexR– AlexR2016年11月03日 14:42:00 +00:00Commented Nov 3, 2016 at 14:42
JavaScript (ES6), 26 bytes
f=n=>n&&(n^(n>>=1))%2+f(n)
Works by counting the transitions between 0 and 1. Only works up to 31 bits. 29 bytes to support 53 bits:
f=n=>1<=n&&(n%2^n/2%2)+f(n/2)
05AB1E, (削除) 7 (削除ここまで) 5 bytes
Saved 2 bytes thanks to Dennis.
b0ÛÔg
Without the edge case of 0 this could be 3 bytes bÔg
.
Try it online! or as a Test suite
Explanation
b # convert to binary
0Û # trim off leading zeroes
Ô # remove adjacent duplicates
g # length
-
\$\begingroup\$ Alternatively:
;^bSO
\$\endgroup\$Makonede– Makonede2021年02月26日 20:58:09 +00:00Commented Feb 26, 2021 at 20:58
CJam, 14 bytes
ri0{2b:!2bj)}j
ri e# read integer
0 e# value for terminal case
{ e# recursive function
2b e# create binary representation with no leading zeros
:! e# flip bits
2b e# convert binary back to integer
j e# recursive call
) e# increment from 0 on the way up
}j e# end
Basically a knock off of my answer to the other question.
Java 7,(削除) 112 108 100 90 (削除ここまで) 73 bytes
int c(int i){int l=1,j=i;for(;(j=j/2)>0;l*=2);return i<1?0:1+c(2*l-1-i);}
Basic idea
Lets take an no 10110(21)
then you do set all bits in no 21 and you will get 11111
and after that you would subtract the original number from 11111.
You will get 01001 and loop it until you will get 0
-
\$\begingroup\$
j=j/2
can be shortened toj/=2
. Apart from that a great answer! \$\endgroup\$Kevin Cruijssen– Kevin Cruijssen2016年11月03日 10:10:19 +00:00Commented Nov 3, 2016 at 10:10 -
\$\begingroup\$ Hmm.. a port from @Neil's JavaScript answer is shorter though:
int c(int i){return i>0?((i^(i>>=1))%2+c(i):0;}
(47 bytes). I would still leave your current answer as well though, since it's more original, and ports from other users are the complete opposite of original. :) \$\endgroup\$Kevin Cruijssen– Kevin Cruijssen2016年11月03日 10:18:49 +00:00Commented Nov 3, 2016 at 10:18
J, 14 bytes
**1+/@,2~:/\#:
Counts the number of runs in the binary digits of n with the special case returning 0 for n = 0.
Usage
f =: **1+/@,2~:/\#:
(,.f"0) 0 1 42 97 170 255 682 8675309 4812390 178956970 2863311530
0 0
1 1
42 6
97 3
170 8
255 1
682 10
8675309 11
4812390 14
178956970 28
2863311530 32
Explanation
**1+/@,2~:/\#: Input: integer n
#: Get the binary digits of n
2 \ For each overlapping sublist of size 2
~:/ Reduce by not-equals
1 , Prepend a 1
+/@ Reduce by addition
* Sign(n), returns 0 for n = 0 else 1
* Multiply with the previous sum and return
CJam, (削除) 11 (削除ここまで) 10 bytes
Thanks to @Dennis for saving one byte!
ri_2be`,e&
Explanation
ri #e Read as integer
#e STACK: 97
_ #e Duplicate
#e STACK: 97, 97
2b #e Convert to binary
#e STACK: 97, [1 1 0 0 0 0 1]
e` #e Run-length encoding
#e STACK: 97, [[2 1] [4 0] [1 1]]
, #e Length
#e STACK: 97, 3
e& #e Return first value if 0, or else the second value
#e STACK: 3
-
1\$\begingroup\$
e&
(logical AND) saves a byte over\g*
. \$\endgroup\$Dennis– Dennis2016年11月03日 14:03:22 +00:00Commented Nov 3, 2016 at 14:03 -
\$\begingroup\$ @Dennis Thanks! It's handy how CJam's logical AND works, I had no idea \$\endgroup\$Luis Mendo– Luis Mendo2016年11月03日 14:56:13 +00:00Commented Nov 3, 2016 at 14:56
Vim, (削除) 62 (削除ここまで) 59 bytes
-3 bytes thanks to DJMcMayhem
C0
<C-r>=pri<Tab>'%b',<C-r>")
<Esc>0qqC<C-r>=tr(@",'01','10')
<Esc>:s/^0\+
k<C-a>j@qq@q
Here is the xxd output with the unprintable characters intact:
0000000: 4330 0d12 3d70 7269 0927 2562 272c 1222 C0..=pri.'%b',."
0000010: 290d 1b30 7171 4312 3d74 7228 4022 2c27 )..0qqC.=tr(@",'
0000020: 3031 272c 2731 3027 290d 1b3a 732f 5e30 01','10')..:s/^0
0000030: 5c2b 0d6b 016a 4071 7140 71 \+.k.j@qq@q
Explanation
C " Delete the number (it goes in @")
0<CR> " Print 0 (our counter) and a carriage return
<C-r>=pri<Tab>'%b',<C-r>")<CR><Esc> " Use `printf()` to insert the number as base 2
0qq " Return to column 0, start recording a macro
C<C-r>=tr(@",'01','10')<CR><Esc> " Replace 0s with 1s and vice versa
:s/^0\+<CR> " Delete leading 0s
k<C-a> " Increment the number on the line above
j " Return to the previous line
@q " Invoke macro recursively
q@q " Stop recording and invoke macro
-
1\$\begingroup\$ Nice! Some tips:
:s/^0*
is one byte shorter than:s/^0\+
, and while you are in the "eval" register, you can just dopr<S-tab>'%b',<C-r>")
for autocomplete. (Saves 4 bytes) \$\endgroup\$DJMcMayhem– DJMcMayhem2016年11月03日 16:33:22 +00:00Commented Nov 3, 2016 at 16:33 -
\$\begingroup\$ Oh, thanks for the autocomplete tip! I can't use
:s/^0*
because it matches an empty line, and I need it to fail for empty an empty line to escape the recursive macro. \$\endgroup\$Jordan– Jordan2016年11月03日 16:50:49 +00:00Commented Nov 3, 2016 at 16:50
Racket 349 bytes
(define(h s)(apply string(map(λ(x)(if(eq? x #0円)#1円 #0円))(string->list s))))(define(g s)(let*
((l(string-length s))(k(for/list((i s)(n l)#:final(not(equal? i #0円)))n)))(substring s(last k))))
(define(f n)(if(= 0 n)0(begin(let loop((n n)(c 1))(define m(string->number(string-append "#b"
(g(h(number->string n 2))))))(if(> m 0)(loop m(add1 c))c))))
Ungolfed:
(define (invertBinary s)
(apply string
(map
(λ(x)(if(eq? x #0円)#1円 #0円))
(string->list s))))
(define (trimLeading0s s)
(let* ((l (string-length s))
(k (for/list ((i s)
(n l)
#:final (not(equal? i #0円)))
n)))
(substring s (last k))))
(define (f n)
(if (= 0 n) 0
(begin
(let loop ((n n)
(c 1))
(define m
(string->number
(string-append
"#b"
(trimLeading0s
(invertBinary
(number->string n 2))))))
(if (> m 0)
(loop m (add1 c))
c)))))
Testing:
(f 0)
(f 1)
(f 42)
(f 97)
(f 170)
(f 255)
(f 682)
(f 8675309)
(f 4812390)
(f 178956970)
(f 2863311530)
Output:
0
1
6
3
8
1
10
11
14
28
32
-
\$\begingroup\$ You can save 2 bytes by changing
tl
andib
to 1-byte names. \$\endgroup\$user45941– user459412016年11月03日 06:40:09 +00:00Commented Nov 3, 2016 at 6:40 -
\$\begingroup\$ Done. Thanks for the suggestion. \$\endgroup\$rnso– rnso2016年11月03日 06:47:14 +00:00Commented Nov 3, 2016 at 6:47
MATL, 7 bytes
BY'nwa*
Explanation
% Implicit input, for example 97
% STACK: 97
B % Convert to binary
% STACK: [1 1 0 0 0 0 1]
Y' % Run-length encoding
% STACK: [1 0 1], [2 4 1]
n % Number of elements
% STACK: [1 0 1], 3
w % Swap
% STACK: 3, [1 0 1]
a % Any: gives 1 if any element is nonzero
% STACK: 3, 1
* % Multiply
% STACK: 3
% Implicit display
Burlesque, 8 bytes
rib2gnL[
ri # Read as integer
b2 # Convert to binary
gn # Collapse like bits
L[ # Find length
29 bytes
ri0j{j+.j2dg)n!2ug}{^^nz}w!vv
Actually doing the calculation
ri #Read val as int
0j #Push a 0 (counter) to the bottom of the stack
{
j+.j # Increment counter and put back
2dg # Get the digits of binary val
)n! # Not each digit
2ug # Convert back to decimal
}
{^^nz}w! # While not zero
vv # Drop final zero leaving counter
Ruby, 26 bytes
f=->n{n<1?0:-n%4/2+f[n/2]}
Inspired by xnor's Python answer.
APL, 13 characters/bytes
+/2≠/0,2⊥⍣ ̄1⊢
base 10 to base 2 conversion with all necessary digits
2⊥⍣ ̄1⊢
2⊥⍣ ̄1⊢4812390
---> 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0
add a leading 0
0,
0,1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0
---> 0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0
pair-wise reduction that gives 1 if consecutive elements are not equal
2≠/
2≠/0 1 0 0 1 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 0 1 1 0
---> 1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1
sum
+/
+/1 1 0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 0 1 0 1
---> 14
Go, 172 bytes
import(."fmt";."strings")
func f(n uint)(i int){for;n>0;i++{Sscanf(Map(func(r rune)rune{if r<'1'{return'1'}else{return'0'}},TrimLeft(Sprintf("%b",n),"0")),"%b",&n)}
return}
Implements the algorithm more or less verbatim from the OP.
PHP, 64 bytes
based on my countdown solution
for($n=$argv[1];$n;print 1)$n=bindec(strtr(decbin($n),"01",10));
prints 1
character k
times, where k
is the number of iterations.
+4 bytes for integer output: (empty output for 0
)
for($n=$argv[1];$n;$i++)$n=bindec(strtr(decbin($n),"01",10));echo$i;
JavaScript (ES6), 44
Recursive function
Limited to javascript positive integer, 31 bits:
f=(a,s=0)=>a?f((-1>>>Math.clz32(a))-a,s+1):s
Managing double precision number up to 53 significant bits - 59 bytes:
F=(a,s=0)=>a?F('0b'+a.toString(2).replace(/./g,1)-a,s+1):s
In another way: using the amazing algorithm by @Dennis, non recursive function managing up 53 bits, 43 bytes:
a=>a&&a.toString(2).match(/(.)1円*/g).length
PHP, 51 bytes
<?=preg_match_all('/(1+|0+)/',decbin($argv[1])?:o);
Uses a regex to count the number of runs of 1 or 0. Unfortunately this needs a special case for input of 0
that requires 3 additional bytes (and gives a notice).
-
\$\begingroup\$ a) Use a digit >1 instead of
o
to avoid the notice. b) You can save 3 bytes with the-F
flag and$argn
instead of$argv[1]
. c)/1+|0+/
should suffice for the regex. \$\endgroup\$Titus– Titus2018年04月24日 17:51:12 +00:00Commented Apr 24, 2018 at 17:51
Java 7, 71 bytes
int b(Long a){return a==0?0:1+b(~a&-1L>>>64-a.toString(a,2).length());}
I know this is beaten by Geobits' split
solution (which will eventually be posted) but this was still fun to write
Octave, 47 bytes
@(x)(sum(dec2bin(bitxor(x,idivide(x,2)))=='1'))
According to the OEIS entry, the value we are looking for as the solution to this challenge is also equal to the number of 1
s in the Gray code for the given integer.
Wikipedia tells me the Gray code can be calculated as x ^ (x>> 1), so in the above function I calculate the Gray code as such, convert it to a binary string, and count how many digits of that string are 1
.
Java 7, 64 bytes
long g(Long n){return n.toString(n,2).split("0+").length*2-n%2;}
I know this could be beaten by a port of one of the better answers, but I came up with it in chat, and I can't not post it after Poke said something about it :)
Bash, 57 bytes
Packages: Core Utililities, grep, sed, vim (for xxd
)
Assume the number is given in binary format. Any length is acceptable :)
xxd -b -c1|cut -d" " -f2|sed s/^0*//|grep -o .|uniq|wc -l
PHP, (削除) 55 (削除ここまで) 52 bytes
for($i=$argn;$i;$c++,$i^=(1<<log($i,2)+1)-1);echo$c;
All done arithmetically/bitwise (no strings). Am stuck getting it smaller than the 51 byte answer though...
PHP, 50 bytes
<?=array_sum(str_split(decbin($argn&-2^$argn*2)));
Unfortunately, really don't think I can get it any more golfed than this!
The idea is to count transitions 1->0 or 0->1.
C (gcc), 76 Bytes, 72 Bytes (thanks to celingcat)
unsigned n,m,i;f(x){for(i=0;n=x;x^=m-1,i++)for(m=2;n/=2;m+=m);return i;}
Husk, 6 bytes
ΣẊ≠:0ḋ
Algorithm from Popov's APL answer.
Husk, 9 bytes
←LU¡ȯḋm¬ḋ
The approach shown in the question.
Explanation
←LU¡ȯḋm¬ḋ
¡ apply function pinfinitely, collecting results
ȯ composition of three function
ḋ convert to binary digits
m¬ negate each bit
ḋ convert back to base-10
U split infinite list at first non-unique value
L get the length of the list
← decrement
~(~a) == a
\$\endgroup\$