1
0
Fork
You've already forked sym-lambda
0
Symbolic mathematics library in pure Haskell.
Haskell 100%
Find a file
2025年03月21日 04:58:43 +00:00
app Add .gitignore 2025年03月21日 04:24:04 +00:00
Calculus Rename according to cabal 2025年03月21日 04:47:19 +00:00
GroupTheory Add basic group operations 2025年03月21日 04:47:31 +00:00
NumberSystems Add basic complex operations 2025年03月21日 04:53:18 +00:00
.gitignore Add .gitignore 2025年03月21日 04:24:04 +00:00
CHANGELOG.md Initial commit 2025年03月21日 04:20:38 +00:00
README.org Add rings 2025年03月21日 04:58:43 +00:00
sym-lambda.cabal Initial commit 2025年03月21日 04:20:38 +00:00

Symλ

Symλ is a library in Haskell to do symbolic mathematics, ála SymPy. It intends to provide an efficient and clean API to be embedded in projects of scientific programming.

NOTE: The project is in the works, and the latest master might not build with cabal. The API also changes frequently. Things would be much more stable once I got most things working and would send to Hackage.

Mathematics

Number Systems

  • Real
  • Complex

Linear Algebra

  • [] Matrix operations
  • [] Vector space representations and operations

Algebra

Group Theory

  • Basic group operations
  • [] Combinatorial group theory

Ring Theory

  • [] Basic ring operations
  • [] Commutative rings

Calculus

  • Single Variable Calculus

    • Symbolic Differentiation in One Variable
    • Symbolic Integration in One Variable
  • [] Multivariate/Vector Calculus

    • [] Partial Differentiation
    • [] Differential Operators (Gardient, Laplacian etc.)
    • Double and Triple Integrals
  • Differential Equations
  • Partial Differential Equations

References

These are the references towards implementing most of the algorithms in this library:

  • Joel S. Cohen, Computer Algebra and Symbolic Computation (2002-2003). Vol. I & II
  • (ed. Robert Grossman), Symbolic Computation: Applications to Scientific Computing (1989)
  • Manuel Bronstein, Symbolic Integration I: Transcendent Functions (2000)
  • (ed. Wang & Zheng) Differential Equations with Symbolic Computation (2000)