1
2
Fork
You've already forked llama
0
Facebook (Meta)'s LLaMA. LLaMA is a (L)arge (La)nguage (M)odel (A)I. Also named as Large Language Model Meta Artificial Intelligence. This code is done in Python, and makes use of PyTorch and SentencePiece.
Python 92.5%
Shell 7.5%
Guillaume Lample 57b0eb62de
Merge pull request #142 from Loryhoof/patch-1
Added colon in README.md
2023年03月07日 10:35:56 +01:00
llama changed max_seq_len 1024 to 2048 2023年03月05日 11:28:50 -05:00
.gitignore Initial commit 2023年02月24日 05:20:46 -08:00
CODE_OF_CONDUCT.md Initial commit 2023年02月24日 05:20:46 -08:00
CONTRIBUTING.md Initial commit 2023年02月24日 05:20:46 -08:00
download.sh Initial commit 2023年02月24日 05:20:46 -08:00
example.py Add FAQ.md // add command line options 2023年03月03日 02:37:02 -08:00
FAQ.md Add FAQ.md // add command line options 2023年03月03日 02:37:02 -08:00
LICENSE Initial commit 2023年02月24日 05:20:46 -08:00
MODEL_CARD.md Fix typos in MODEL_CARD.md 2023年03月02日 01:04:58 -05:00
README.md Added collon 2023年03月07日 04:23:54 +08:00
requirements.txt Initial commit 2023年02月24日 05:20:46 -08:00
setup.py Initial commit 2023年02月24日 05:20:46 -08:00

LLaMA

This repository is intended as a minimal, hackable and readable example to load LLaMA (arXiv) models and run inference. In order to download the checkpoints and tokenizer, fill this google form

Setup

In a conda env with pytorch / cuda available, run:

pip install -r requirements.txt

Then in this repository:

pip install -e .

Download

Once your request is approved, you will receive links to download the tokenizer and model files. Edit the download.sh script with the signed url provided in the email to download the model weights and tokenizer.

Inference

The provided example.py can be run on a single or multi-gpu node with torchrun and will output completions for two pre-defined prompts. Using TARGET_FOLDER as defined in download.sh:

torchrun --nproc_per_node MP example.py --ckpt_dir $TARGET_FOLDER/model_size --tokenizer_path $TARGET_FOLDER/tokenizer.model

Different models require different MP values:

Model MP
7B 1
13B 2
33B 4
65B 8

FAQ

Reference

LLaMA: Open and Efficient Foundation Language Models -- https://arxiv.org/abs/2302.13971

@article{touvron2023llama,
 title={LLaMA: Open and Efficient Foundation Language Models},
 author={Touvron, Hugo and Lavril, Thibaut and Izacard, Gautier and Martinet, Xavier and Lachaux, Marie-Anne and Lacroix, Timoth{\'e}e and Rozi{\`e}re, Baptiste and Goyal, Naman and Hambro, Eric and Azhar, Faisal and Rodriguez, Aurelien and Joulin, Armand and Grave, Edouard and Lample, Guillaume},
 journal={arXiv preprint arXiv:2302.13971},
 year={2023}
}

Model Card

See MODEL_CARD.md

License

See the LICENSE file.