Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings

its-Kumar/Machine-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

History

32 Commits

Repository files navigation

Machine-Learning

Basic Machine Learning Tutorial using Python and R.

Supervised Learning

Part 1 - Data Preprocessing

  1. categorical_data
  2. data_preprocessing

Part 2 - Regression

  1. Simple Linear Regression
  2. Multiple Linear Regression
  3. Polynomial Regression
  4. SVR
  5. Decision Tree Regression
  6. Random Forest Regression
  7. Regression Template

Part 3 - Classification

  1. Logistic Regression
  2. KNN
  3. SVM
  4. Kernel - SVM
  5. Naive Bayes
  6. Decision Tree Classification
  7. Random Forest Classification
  8. Classification Template

Un-supervised Learning

Part 4 - Clustering

  1. K-means Clustering
  2. Hierarchical Clustering

Part 5 - Association Rule Learning

  1. Apriori
  2. Eclat

Reinforcement Learning

Part 6 - Reinforcement Learning

  1. Upper Confidence Bound (UCB)
  2. Thompson Sampling

Deep Learning

Part 7 - Natural Language Processing

  1. NPL
  2. NPL using google's BERT model

Part 8 - Deep Learning

  1. Artificial Neural Network (ANN)
  2. Convolution Neural Network (CNN)

Part 9 - Dimensionality Reduction

  1. Principle Component Analysis (PCA)
  2. Linear Discriminant Analysis (LDA)
  3. Kernel-PCA

Part 10 - Model Selection & Boosting

  1. Comparing performance of regression models
  2. Comparing performance of classification models
  3. k-fold CrossValidation
  4. Grid Search
  5. XG Boost
  6. CatBoost

Releases

No releases published

Packages

No packages published

Languages

AltStyle によって変換されたページ (->オリジナル) /