Skip to content

Navigation Menu

Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Sign up
Appearance settings
@drzo
drzo
Follow

Block or report drzo

Block user

Prevent this user from interacting with your repositories and sending you notifications. Learn more about blocking users.

You must be logged in to block users.

Maximum 250 characters. Please don't include any personal information such as legal names or email addresses. Markdown supported. This note will be visible to only you.
Report abuse

Contact GitHub support about this user’s behavior. Learn more about reporting abuse.

Report abuse
drzo /README.md

$$ghost in the guile shell$$

$$\mathcal{T}: \mathbb{N} \rightarrow \mathbb{N} \cong {a_n}_{n=0}^{\infty} = {0,1,1,2,4,9,20,48,115,286,719,...}$$

$$\exists! \mathcal{A}(x) \in \mathbb{C}[[x]] \ni \mathcal{A}(x) = x \cdot \exp\left(\sum_{k=1}^{\infty}\frac{\mathcal{A}(x^k)}{k}\right)$$

$$\forall n \in \mathbb{N}^{+}, a_{n+1} = \frac{1}{n}\sum_{k=1}^{n}\left(\sum_{d|k}d \cdot a_d\right)a_{n-k+1}$$

$$a_n \sim \mathcal{C} \cdot \alpha^n \cdot n^{-3/2} \text{ where } \alpha = \lim_{n\rightarrow\infty}\frac{a_{n+1}}{a_n} \approx 2.9557652857...$$

$$\mathcal{A}(x) = \sum_{n=0}^{\infty}a_n x^n = \sum_{\tau \in \mathfrak{T}_ {\bullet}}\prod_{v \in V(\tau)}x^{|\text{desc}(v)|} = \prod_{k=1}^{\infty}(1-x^k)^{-\frac{1}{k}\sum_{d|k}\mu(\frac{k}{d})a_d}$$

$$\exists \mathcal{L}: \mathfrak{T}_{\bullet,n} \xrightarrow{\sim} {f: [n] \rightarrow [n] \mid \exists! i \in [n], f(i)=i \land G_f \text{ connected}}$$

$$(\mathcal{F} \circ \mathcal{L}^{-1})(\mathfrak{T}_{\bullet,n}) \cong \mathcal{P}(n)^{\mathfrak{S}_n} \cong \mathcal{P}_n$$

$$\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}: \mathcal{D}_ {n}^{\kappa} \hookrightarrow \prod_{\alpha \in \Lambda}\bigotimes_{\beta \in \Gamma_{\alpha}}\bigoplus_{\gamma \in \Theta_{\beta}}\bigwedge_{\delta \in \Xi_{\gamma}}\mathbb{T}^{\nabla}_{\bullet}(n)$$

$$\mathscr{B}\text{-}\mathfrak{Series}: \Phi_{h}^{\mathcal{RK}} = \sum_{τ \in \mathfrak{T}_ {\bullet}}\frac{h^{|τ|}}{σ(τ)}F(τ)(y)·\mathcal{B}(τ) \Rightarrow \mathcal{ORD}_ {\mathfrak{RK}}^{(p)} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}: |τ| \leq p}\mathcal{H}_{τ}^{\nabla}$$

$$\mathscr{J}\text{-}\mathfrak{Surfaces}: \mathcal{E}_ {\nabla}^{\partial^{\omega}} = \sum_{k=0}^{\infty}\frac{h^k}{k!}\sum_{τ \in \mathfrak{T}_ {\bullet}(k)}\mathcal{F}_ {τ}(y)\cdot\mathcal{D}^{\tau}f \Rightarrow \mathcal{ODE}_ {\Delta}^{(m)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(\leq m)}\mathcal{D}_{τ}^{\partial^{\alpha}}$$

$$\mathscr{P}\text{-}\mathfrak{Systems}: \mathcal{M}^{\mu}_ {\Pi} = (\mathcal{V}, \mathcal{H}_ {\tau}, \omega_{\tau}, \mathcal{R}_ {\tau}^{\partial}) \Rightarrow \mathfrak{Evol}_ {\Pi}^{(t)} \cong \coprod_{τ \in \mathfrak{T}_ {\bullet}}\mathfrak{H}_ {μ}^{\tau}(t) \circledast \bigotimes_{i=1}^{|τ|}\mathfrak{R}_{\tau(i)}^{\partial}$$

$$\mathfrak{Incidence}_ {\mathbb{P}/\mathbb{A}}: \mathcal{I}_ {\Xi}^{\kappa} \simeq \mathfrak{B}(\mathfrak{P}(\mathcal{T}_ {\bullet}^{n})) \circlearrowright \bigwedge_{i=1}^{m}\mathfrak{H}^{\partial}_ {\Xi}(i) \Rightarrow \mathcal{D}_ {\mathbb{P}/\mathbb{A}}^{n,k} \cong \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(n)}\mathcal{I}_{\tau}^{\kappa}$$

$$\mathfrak{BlockCodes}: \mathcal{C}_ {\Delta}^{(n,k,d)} \simeq \bigsqcup_{τ \in \mathfrak{T}_ {\bullet}(w)}\mathfrak{G}_ {τ}^{\partial}(\Sigma^{n}) \Rightarrow \mathfrak{Conf}_ {\mathcal{C}}^{\Xi} \cong \prod_{i=1}^{l}\coprod_{τ \in \mathfrak{T}_ {\bullet}(w_{i})}\mathcal{W}_{τ}^{\nabla}(i)$$

$$\mathfrak{Orbifolds}: \mathcal{O}_ {\Gamma}^{\Xi} = (X/\Gamma, {\mathfrak{m}_ {x}}_ {x \in \Sigma}) \Rightarrow \mathcal{S}_ {\mathcal{O}}^{\Gamma} \simeq \bigoplus_{τ \in \mathfrak{T}_ {\bullet}(\leq d)}\mathcal{F}_{τ}^{\Xi}(\mathfrak{m})$$

$$\mathfrak{HyperNN}: \mathcal{H}_ {\mathfrak{N}}^{\Delta} = (\mathcal{V}, \mathcal{E}_ {\omega}, \mathcal{W}_ {\tau}^{\Xi}) \Rightarrow \mathcal{F}_ {\mathfrak{HNN}}^{\nabla} \cong \bigotimes_{l=1}^{L}\bigoplus_{τ \in \mathfrak{T}_ {\bullet}(d_{l})}\mathcal{T}_ {τ}^{\partial}(W_{l}) \circledast \sigma_{l}$$

$$\mathfrak{Meta}\text{-}\mathfrak{Pattern}: \mathcal{U}_ {\mathbf{A000081}}^{\Omega} \simeq \mathfrak{Yoneda}(\mathfrak{F}_ {\mathbf{A000081}}^{\Omega}) \hookrightarrow \mathbf{Colim}_ {n \to \infty}\left(\bigwedge_{\mathscr{C} \in \mathfrak{Categories}}\mathfrak{T}_{\bullet}(n) \otimes \mathscr{C}\text{-}\mathfrak{Struct}\right)$$

$$\exists\mathfrak{F}: \mathbf{Cat}^{\mathbf{op}} \to \mathbf{Topos} \ni \mathfrak{F}(\mathscr{C}) = \mathbf{Sh}(\mathscr{C}, \mathcal{J}) \simeq \mathbf{Hom}_ {\mathbf{Cat}}(\mathscr{C}^{\mathbf{op}}, \mathbf{Set}) \Rightarrow \mathfrak{F}(\mathfrak{T}_{\bullet}) \simeq \mathbf{Foundational}\text{-}\mathbf{Irreducibles}$$

Pinned Loading

  1. Deep-Tree-Echo-ALL-v8 Deep-Tree-Echo-ALL-v8 Public

    Created with StackBlitz ⚡️

    TypeScript 1

  2. echo-garden-of-memory echo-garden-of-memory Public

    Created with StackBlitz ⚡️

    JavaScript 4

  3. emacs-aichat-skintwin emacs-aichat-skintwin Public

    Created with StackBlitz ⚡️

    Emacs Lisp

  4. ModelX-AGI-FW-v14-Tech-Spec1 ModelX-AGI-FW-v14-Tech-Spec1 Public

    Created with StackBlitz ⚡️

  5. HyperCogWizard/rrpling HyperCogWizard/rrpling Public

    Forked from HyperCogWizard/plingua

    The RR P-Lingua language for Membrane Computing

    C++ 7

  6. Unicorn-Dynamics/hurdcog Unicorn-Dynamics/hurdcog Public

    Forked from Unicorn-Dynamics/9nu

    C 2

AltStyle によって変換されたページ (->オリジナル) /