std::ranges::fold_right
(on partitioned ranges)
std::ranges
<algorithm>
/* indirectly-binary-right-foldable */<T, I> F >
class T = std::iter_value_t <I>,
/* indirectly-binary-right-foldable */<T, I> F >
/* indirectly-binary-right-foldable */
<T, ranges::iterator_t <R>> F >
/* indirectly-binary-right-foldable */
<T, ranges::iterator_t <R>> F >
Right-folds the elements of given range, that is, returns the result of evaluation of the chain expression:f(x1, f(x2, ...f(xn, init)))
, where x1
, x2
, ..., xn
are elements of the range.
Informally, ranges::fold_right
behaves like ranges::fold_left (views::reverse (r), init, /*flipped*/(f)).
The behavior is undefined if [
first,
last)
is not a valid range.
[
first,
last)
.concept /*indirectly-binary-left-foldable-impl*/ =
std::movable <T> &&
std::movable <U> &&
std::convertible_to <T, U> &&
std::invocable <F&, U, std::iter_reference_t <I>> &&
std::assignable_from <U&,
concept /*indirectly-binary-left-foldable*/ =
std::copy_constructible <F> &&
std::indirectly_readable <I> &&
std::invocable <F&, T, std::iter_reference_t <I>> &&
std::convertible_to <std::invoke_result_t <F&, T, std::iter_reference_t <I>>,
std::decay_t <std::invoke_result_t <F&, T, std::iter_reference_t <I>>>> &&
/*indirectly-binary-left-foldable-impl*/<F, T, I,
concept /*indirectly-binary-right-foldable*/ =
class /*flipped*/
{
F f; // exposition only
public:
template< class T, class U >
requires std::invocable <F&, U, T>
std::invoke_result_t <F&, U, T> operator()( T&&, U&& );
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
An object of type U that contains the result of right-fold of the given range over f, where U is equivalent to std::decay_t <std::invoke_result_t <F&, std::iter_reference_t <I>, T>>;.
If the range is empty, U(std::move(init)) is returned.
struct fold_right_fn { template<std::bidirectional_iterator I, std::sentinel_for <I> S, class T = std::iter_value_t <I>, /* indirectly-binary-right-foldable */<T, I> F> constexpr auto operator()(I first, S last, T init, F f) const { using U = std::decay_t <std::invoke_result_t <F&, std::iter_reference_t <I>, T>>; if (first == last) return U(std::move(init)); I tail = ranges::next (first, last); U accum = std::invoke (f, *--tail, std::move(init)); while (first != tail) accum = std::invoke (f, *--tail, std::move(accum)); return accum; } template<ranges::bidirectional_range R, class T = ranges::range_value_t <R>, /* indirectly-binary-right-foldable */<T, ranges::iterator_t <R>> F> constexpr auto operator()(R&& r, T init, F f) const { return (*this)(ranges::begin (r), ranges::end (r), std::move(init), std::ref (f)); } }; inline constexpr fold_right_fn fold_right;
Exactly ranges::distance (first, last) applications of the function object f.
The following table compares all constrained folding algorithms:
Fold function template | Starts from | Initial value | Return type |
---|---|---|---|
ranges::fold_left | left | init | U |
ranges::fold_left_first | left | first element | std::optional <U> |
ranges::fold_right | right | init | U |
ranges::fold_right_last | right | last element | std::optional <U> |
ranges::fold_left_with_iter | left | init |
(1) ranges::in_value_result <I, U> (2) ranges::in_value_result <BR, U>, where BR is ranges::borrowed_iterator_t <R> |
ranges::fold_left_first_with_iter | left | first element |
(1) ranges::in_value_result <I, std::optional <U>> (2) ranges::in_value_result <BR, std::optional <U>> where BR is ranges::borrowed_iterator_t <R> |
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_ranges_fold |
202207L |
(C++23) | std::ranges fold algorithms
|
__cpp_lib_algorithm_default_value_type |
202403L |
(C++26) | List-initialization for algorithms (1,2) |
#include <algorithm> #include <complex> #include <functional> #include <iostream> #include <ranges> #include <string> #include <utility> #include <vector> using namespace std::literals; namespace ranges = std::ranges; int main() { auto v = {1, 2, 3, 4, 5, 6, 7, 8}; std::vector <std::string > vs{"A", "B", "C", "D"}; auto r1 = ranges::fold_right(v.begin(), v.end(), 6, std::plus <>()); // (1) std::cout << "r1: " << r1 << '\n'; auto r2 = ranges::fold_right(vs, "!"s, std::plus <>()); // (2) std::cout << "r2: " << r2 << '\n'; // Use a program defined function object (lambda-expression): std::string r3 = ranges::fold_right ( v, "A", [](int x, std::string s) { return s + ':' + std::to_string (x); } ); std::cout << "r3: " << r3 << '\n'; // Get the product of the std::pair::second of all pairs in the vector: std::vector <std::pair <char, float>> data{{'A', 2.f}, {'B', 3.f}, {'C', 3.5f}}; float r4 = ranges::fold_right ( data | ranges::views::values, 2.0f, std::multiplies <>() ); std::cout << "r4: " << r4 << '\n'; using CD = std::complex <double>; std::vector <CD> nums{{1, 1}, {2, 0}, {3, 0}}; #ifdef __cpp_lib_algorithm_default_value_type auto r5 = ranges::fold_right(nums, {7, 0}, std::multiplies {}); #else auto r5 = ranges::fold_right(nums, CD{7, 0}, std::multiplies {}); #endif std::cout << "r5: " << r5 << '\n'; }
Output:
r1: 42 r2: ABCD! r3: A:8:7:6:5:4:3:2:1 r4: 42 r5: (42,42)