J. Henri Poincare (1854-1912)

Final Answers
© 2000-2021 Gérard P. Michon, Ph.D.

Chaos Theory

Michon

Related articles:

Related Links (Outside this Site)

What is Chaos Theory? by The Fractal Foundation

Wikipedia : Chaos Theory | Strange attractor

Videos

The Strange New Science of Chaos (57:34) Nova S16 #3 (PBS, 1989年01月31日).
Why 4.669 is famous (18:54) by Ben Sparks (Numberphile, 2017年01月16日).
The Butterfly Effect (15:04) by Thoughty2 (2018年01月11日).
border
border

Chaos Theory


(2018年04月02日) Long-Term Stability of the Solar System

[画像: Come back later, we're still working on this one... ]

Victor Puiseux (1820-1883) | Spiru Haret (1851-1912)
J. Henri Poincaré (1854-1912; X1873) | J.E. Littlewood (1885-1977) | Mary Cartwright (1900-1998)
Andrey Kolmogorov (1903-1987) | KAM Theorem (1963) | Gabriella Pinzari (1966-)


(2018年04月01日) The Butterfly Effect (Edward N. Lorenz, 1962)
The chaotic nature of mereorology.

[画像: Come back later, we're still working on this one... ]

Butterfly effect | Henri Poincaré (1854-1912) | Norbert Wiener (1894-1964) | Edward Lorenz (1917-2008)

The Strange New Science of Chaos (57:34) Nova Season 16, Episode 3 (PBS, 1989年01月31日).

Chaos: The Science of the Butterfly Effect (12:50) by Derek Muller (Veritasium, 2019年12月06日).


(2003年07月30日) Feigenbaum Constants (Mitchell J. Feigenbaum, 1975)
d = 4.669201609102990671853203820466201617258185577475769-
a = -2.502907875095892822283902873218215786381271376727150-

Bifurcation Velocity (first Feigenbaum constant) :

The "bifurcation velocity" (d) governs the geometric onset of chaos via period-doubling in iterative sequences (with respect to some parameter which is used linearly in each iteration, to damp a given function having a quadratic maximum).

This universal constant was unearthed in October 1975 by Mitchell J. Feigenbaum (b.1944).

Reduction Parameter (second Feigenbaum constant) :

The related "reduction parameter" (a) is the second Feigenbaum constant...

[画像: Come back later, we're still working on this one... ]

Feigenbaum Constant by Eric W. Weisstein (MathWorld) | Mathematical Constants by Steven R. Finch.

4.669... The Feigenbaum constant (18:54) by Ben Sparks (Numberphile, 2017年01月16日).
This equation will change how you see the world (18:38) by Derek Muller (Veritasium, 2020年01月29日).

border
border
visits since April 1, 2018
(c) Copyright 2000-2021, Gerard P. Michon, Ph.D.

AltStyle によって変換されたページ (->オリジナル) /