W.Xu.
A Study of Cirquent Calculus Systems for
Computability Logic. Research project funded by the National Science
Foundation of China (61303030) and the Fundamental Research Funds for the
Central Universities of China (K50513700). Xidian
University, 2013-2016.
G.Japaridze. A Logical Study of
Interactive Computational Problems Understood as Games. Research
project funded by the National Science Foundation of US (CCR-0208816).
Villanova University, 2002-2006.
[Abr94] S. Abramsky and R. Jagadeesan. Games and full
completeness for multiplicative linear logic. Journal of Symbolic
Logic 59 (2) (1994), pp. 543-574.
[Avr87] A. Avron. A constructive analysis of RM. Journal
of Symbolic Logic 52 (1987), pp.
939-951.
[Bla72] A. Blass. Degrees of indeterminacy of games. FundamentaMathematicae 77 (1972), pp. 151-166.
[Bla92] A. Blass. A game semantics for linear logic. Annals
of Pure and Applied Logic 56 (1992), pp 183-220.
[Bus86] S. Buss. Bounded Arithmetic (revised version
of Ph. D. thesis). Bibliopolis, 1986.
[Cha81] A. Chandra, D. Kozen and L. Stockmeyer. Alternation.
Journal of the ACM 28 (1981), pp. 114-133.
[Clo92] P. Clote and G. Takeuti.
Bounded arithmetic for NC, ALogTIME, L and NL.
Annals of Pure and Applied Logic 56 (1992), pp. 73-117.
[Coo10] S. Cook and P. Nguyen. Logical Foundations of
Proof Complexity. Cambridge University Press, 2010.
[Fel85] W. Felscher. Dialogues,
strategies, and intuitionistic provability. Annals
of Pure and Applied Logic 28 (1985), pp. 217-254.
[Gir87] J.Y. Girard. Linear logic. Theoretical
Computer Science 50 (1) (1987), pp. 1-102.
[Goe58] K. Goedel. UebereinebishernochnichtbenuezteErweiterung
des finitenStandpunktes. Dialectica
12 (1958), pp. 280-287.
[Gol06] D. Goldin, S. Smolka and P.
Wegner (editors). Interactive Computation: The New Paradigm.
Springer, 2006.
[Gol89] S. Goldwasser, S. Micali and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing 18 (1989), pp. 186-208.
[Gug07] A. Guglielmi. A system of interaction and
structure. ACM Transactions on Computational Logic 8 (2007),
No.1, pp. 1-64.
[Haj93] P. Hajek and P. Pudlak. Metamathematics
of First-Order Arithmetic. Springer, 1993.
[Hey71] A. Heyting. Intuitionism: An Introduction.
Amsterdam, North-Holland Publishing, 3rd revised edition, 1971.
[Hin73] J. Hintikka. Logic, Language-Games and
Information: Kantian Themes in the Philosophy of Logic. Clarendon
Press 1973.
[Hin97] J. Hintikka and G. Sandu. Game-theoretical
semantics. In: Handbook of Logic and Language. J. van Benthem
and A terMeulen, eds.
North-Holland 1997, pp. 361-410.
[Kle52] S.C. Kleene. Introduction to Metamathematics.
D. van Nostrand Company, New York / Toronto, 1952.
[Kra95] J. Krajicek. Bounded Arithmetic,
Propositional Logic, and Complexity Theory. Cambridge University
Press, 1995.
[Lor61]
P. Lorenzen. Ein dialogisches
Konstruktivitテ、tskriterium. In: Infinitistic Methods. In: PWN,
Proc. Symp. Foundations of Mathematics, Warsaw, 1961, pp. 193-200.
[Par71] R. Parikh. Existence and feasibility in arithmetic.
Journal of Symbolic Logic 36 (1971), pp. 494-508.
[Par85] J. Paris and A. Wilkie. Counting problems in
bounded arithmetic. In: Methods in Mathematical Logic. Lecture
Notes in Mathematics No. 1130. Springer, 1985, pp. 317-340.
[Sch06] H. Schwichtenberg. An arithmetic for
polynomial-time computation. Theoretical Computer Science 357
(2006), pp. 202-214.