References Associated with Literature Topic: Other genomic analysis





Reference SpeciesGenes Addressed
Dunaiski CM, et al. (2024) Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol
CGD Papers Entry Pubmed Entry
C. glabrata |CDR1 |ERG6 |ERG7 |FKS1 |FKS2 |FPS1 |MSH2 |PDR1 |SNQ2
Huang SJ, et al. (2024) Antifungal susceptibility, molecular epidemiology, and clinical risk factors of Candida glabrata in intensive care unit in a Chinese Tertiary Hospital. Front Cell Infect Microbiol 14:1455145
CGD Papers Entry Pubmed Entry
C. glabrata |FKS1 |FKS2
Kumar K, et al. (2024) SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 27(4):109607
CGD Papers Entry Pubmed Entry Web Supplement Data
C. glabrata |BMT2 |CHD1 |EPA1 |INO80 |ISW1 |ISW2 |SNF2 |STH1 |SWR1
Misas E, et al. (2024) Genomic description of acquired fluconazole- and echinocandin-resistance in patients with serial Candida glabrata isolates. J Clin Microbiol :e0114023
CGD Papers Entry Pubmed Entry
C. glabrata |FKS1 |FKS2 |PDR1
Nickels TJ, et al. (2024) Tn-seq of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. G3 (Bethesda)
CGD Papers Entry Pubmed Entry
C. glabrata |CDR1 |FKS2 |PDR1
Rai LS, et al. (2024) Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 22(6):e3002693
CGD Papers Entry Pubmed Entry Web Supplement Data
C. albicans |C4_02190C_A |ECE1 |HWP1 |HYR1 |INO1 |ZCF15 |ZCF26
Wang Y and Xu J (2024) Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. J Fungi (Basel) 10(1)
CGD Papers Entry Pubmed Entry
C. auris |ERG11 |FKS1
Ben Abid F, et al. (2023) Molecular characterization of Candida auris outbreak isolates in Qatar from COVID-19 patients reveals the emergence of isolates resistant to three classes of antifungal drugs. Clin Microbiol Infect
CGD Papers Entry Pubmed Entry
C. auris |CDR1 |CDR2 |CIS2 |ERG11 |ERG3 |ERG4 |ERG5 |FKS1 |SNQ2 |STE6 |TAC1b
Li Y, et al. (2023) Whole genome analysis of echinocandin non-susceptible Candida Glabrata clinical isolates: a multi-center study in China. BMC Microbiol 23(1):341
CGD Papers Entry Pubmed Entry
C. glabrata |CAGL0E01353g |CAGL0H07007g |CAGL0K05313g |CAGL0M02145g |SUR2 |ZCF15
Patel SK, et al. (2023) Pol32, an accessory subunit of DNA polymerase delta, plays an essential role in genome stability and pathogenesis of Candida albicans. Gut Microbes 15(1):2163840
CGD Papers Entry Pubmed Entry
C. albicans |HSP30 |HSP90 |NRG1 |POL32
Spruijtenburg B, et al. (2023) Whole genome sequencing analysis demonstrates therapy-induced echinocandin resistance in Candida auris isolates. Mycoses
CGD Papers Entry Pubmed Entry
C. auris |FKS1
Wang F, et al. (2023) Codon usage bias analysis of mitochondrial protein-coding genes in 12 species of Candida. J Genet 102
CGD Papers Entry Pubmed Entry
C. parapsilosis |CapafMp10
Zuber J, et al. (2023) Genome-Wide DNA Changes Acquired by Candida albicans Caspofungin-Adapted Mutants. Microorganisms 11(8)
CGD Papers Entry Pubmed Entry
C. albicans |ALS5 |C4_03210C_A |C4_04960W_A |C5_01660C_A |C7_02580C_A |C7_02710W_A |C7_03580C_A |CRZ1 |CR_05110C_A |CR_06360C_A |GLC7 |GSC1 |GSL1 |RSP5 |MORE
Conte M, et al. (2022) Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis. Front Cell Infect Microbiol 12:1031814
CGD Papers Entry Pubmed Entry Web Supplement Data
C. albicans |HST3
Helmstetter N, et al. (2022) Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes and drug-targets. Genetics
CGD Papers Entry Pubmed Entry
C. glabrata |CAGL0B00242g |ERG4 |FKS1 |MATalpha1
Pais P, et al. (2022) Multiple genome analysis of Candida glabrata clinical isolates renders new insights into genetic diversity and drug resistance determinants. Microb Cell 9(11):174-189
CGD Papers Entry Pubmed Entry Web Supplement Data
C. glabrata |CAGL0C04411g |CAGL0H03465g |CAGL0H09130g |CAGL0I06270g |CAGL0J00891g |EPA1 |ERG2 |ERG20 |ERG3 |ERG9 |FKS1 |FKS2 |PDR1 |RAD6 |MORE
Rizzo M, et al. (2022) Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process. PLoS Genet 18(12):e1010576
CGD Papers Entry Pubmed Entry
C. albicans |ULP1 |ULP2 |ULP3
Spruijtenburg B, et al. (2022) Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect :1-15
CGD Papers Entry Pubmed Entry
C. auris |ERG11 |TAC1b
Guinea J, et al. (2021) Whole genome sequencing confirms Candida albicans and Candida parapsilosis microsatellite sporadic and persistent clones causing outbreaks of candidemia in neonates Med Mycol
CGD Papers Entry Pubmed Entry
Li D, et al. (2021) Application of Machine Learning Classifier to Candida auris Drug Resistance Analysis. Front Cell Infect Microbiol 11:742062
CGD Papers Entry Pubmed Entry
C. auris |ERG11
Min K, et al. (2021) Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans PLoS Pathog 17:e1009861
CGD Papers Entry Pubmed Entry Web Supplement Data
C. albicans |BCY1 |CYR1
Mixao V, et al. (2021) Extreme diversification driven by parallel events of massive loss of heterozygosity in the hybrid lineage of Candida albicans Genetics 217:iyaa004
CGD Papers Entry Pubmed Entry
Munoz JF, et al. (2021) Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris Genetics
CGD Papers Entry Pubmed Entry
C. auris |B9J08_000020 |B9J08_001049 |B9J08_001512 |B9J08_001533 |B9J08_001960 |B9J08_002580 |B9J08_004095 |B9J08_004119 |B9J08_004456 |B9J08_004881 |B9J08_004907 |B9J08_005531
C. albicans |ERG11
Oh SH, et al. (2021) Using Genomics to Shape the Definition of the Agglutinin-Like Sequence ( ALS) Family in the Saccharomycetales Front Cell Infect Microbiol 11:794529
CGD Papers Entry Pubmed Entry
C. albicans |ALS1 |ALS2 |ALS3
Vazquez-Franco N, et al. (2021) Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes Fungal Genet Biol
CGD Papers Entry Pubmed Entry
C. glabrata |HST1 |RFM1 |SUM1
Xu Z, et al. (2021) De novo genome assembly of Candida glabrata reveals cell wall protein complement and structure of dispersed tandem repeat arrays Mol Microbiol 113:1209-1224
CGD Papers Entry Pubmed Entry Web Supplement Data
C. glabrata |AED1 |AWP12 |AWP13 |CAGL0C00253g |CAGL0C00968g |CAGL0C01133g |CAGL0C03828g |CAGL0E00231g |CAGL0E01661g |CAGL0G06842g |CAGL0I07293g |CAGL0J01727g |CAGL0J01774g |CAGL0J03780g |MORE
Yang F, et al. (2021) The fitness costs and benefits of trisomy of each Candida albicans chromosome Genetics
CGD Papers Entry Pubmed Entry
Jenull S, et al. (2020) ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans J Fungi (Basel) 6:E182
CGD Papers Entry Pubmed Entry Web Supplement Data
C. albicans |CAP1
Sitterle E, et al. (2020) Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. J Antimicrob Chemother
CGD Papers Entry Pubmed Entry
C. albicans |ERG11 |GSC1 |GSL1 |MRR1 |TAC1 |UPC2
Viana R, et al. (2020) Genome-Scale Metabolic Model of the Human Pathogen Candida albicans: A Promising Platform for Drug Target Prediction J Fungi (Basel) 6:E171
CGD Papers Entry Pubmed Entry
C. albicans |DFR1 |ERG11 |ERG7 |FAS1 |FAS2 |FOL1 |GSC1 |GSL1 |TRR1 |URA1
Result Page : 1 2 Next




AltStyle によって変換されたページ (->オリジナル) /