| Reference | Species | Genes Addressed |
|---|
Dunaiski CM, et al. (2024) Molecular epidemiology and antimicrobial resistance of vaginal Candida glabrata isolates in Namibia. Med Mycol CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |ERG6 |ERG7 |FKS1 |FKS2 |FPS1 |MSH2 |PDR1 |SNQ2 |
Huang SJ, et al. (2024) Antifungal susceptibility, molecular epidemiology, and clinical risk factors of Candida glabrata in intensive care unit in a Chinese Tertiary Hospital. Front Cell Infect Microbiol 14:1455145 CGD Papers Entry Pubmed Entry | C. glabrata | |FKS1 |FKS2 |
Kumar K, et al. (2024) SWI/SNF complex-mediated chromatin remodeling in Candida glabrata promotes immune evasion. iScience 27(4):109607 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |BMT2 |CHD1 |EPA1 |INO80 |ISW1 |ISW2 |SNF2 |STH1 |SWR1 |
Misas E, et al. (2024) Genomic description of acquired fluconazole- and echinocandin-resistance in patients with serial Candida glabrata isolates. J Clin Microbiol :e0114023 CGD Papers Entry Pubmed Entry | C. glabrata | |FKS1 |FKS2 |PDR1 |
Nickels TJ, et al. (2024) Tn-seq of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. G3 (Bethesda) CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |FKS2 |PDR1 |
Rai LS, et al. (2024) Metabolic reprogramming during Candida albicans planktonic-biofilm transition is modulated by the transcription factors Zcf15 and Zcf26. PLoS Biol 22(6):e3002693 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |C4_02190C_A |ECE1 |HWP1 |HYR1 |INO1 |ZCF15 |ZCF26 |
Wang Y and Xu J (2024) Associations between Genomic Variants and Antifungal Susceptibilities in the Archived Global Candida auris Population. J Fungi (Basel) 10(1) CGD Papers Entry Pubmed Entry | C. auris | |ERG11 |FKS1 |
Ben Abid F, et al. (2023) Molecular characterization of Candida auris outbreak isolates in Qatar from COVID-19 patients reveals the emergence of isolates resistant to three classes of antifungal drugs. Clin Microbiol Infect CGD Papers Entry Pubmed Entry | C. auris | |CDR1 |CDR2 |CIS2 |ERG11 |ERG3 |ERG4 |ERG5 |FKS1 |SNQ2 |STE6 |TAC1b |
Li Y, et al. (2023) Whole genome analysis of echinocandin non-susceptible Candida Glabrata clinical isolates: a multi-center study in China. BMC Microbiol 23(1):341 CGD Papers Entry Pubmed Entry | C. glabrata | |CAGL0E01353g |CAGL0H07007g |CAGL0K05313g |CAGL0M02145g |SUR2 |ZCF15 |
Patel SK, et al. (2023) Pol32, an accessory subunit of DNA polymerase delta, plays an essential role in genome stability and pathogenesis of Candida albicans. Gut Microbes 15(1):2163840 CGD Papers Entry Pubmed Entry | C. albicans | |HSP30 |HSP90 |NRG1 |POL32 |
Spruijtenburg B, et al. (2023) Whole genome sequencing analysis demonstrates therapy-induced echinocandin resistance in Candida auris isolates. Mycoses CGD Papers Entry Pubmed Entry | C. auris | |FKS1 |
Wang F, et al. (2023) Codon usage bias analysis of mitochondrial protein-coding genes in 12 species of Candida. J Genet 102 CGD Papers Entry Pubmed Entry | C. parapsilosis | |CapafMp10 |
Zuber J, et al. (2023) Genome-Wide DNA Changes Acquired by Candida albicans Caspofungin-Adapted Mutants. Microorganisms 11(8) CGD Papers Entry Pubmed Entry | C. albicans | |ALS5 |C4_03210C_A |C4_04960W_A |C5_01660C_A |C7_02580C_A |C7_02710W_A |C7_03580C_A |CRZ1 |CR_05110C_A |CR_06360C_A |GLC7 |GSC1 |GSL1 |RSP5 |MORE |
Conte M, et al. (2022) Effects of Hst3p inhibition in Candida albicans: a genome-wide H3K56 acetylation analysis. Front Cell Infect Microbiol 12:1031814 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |HST3 |
Helmstetter N, et al. (2022) Population genetics and microevolution of clinical Candida glabrata reveals recombinant sequence types and hyper-variation within mitochondrial genomes, virulence genes and drug-targets. Genetics CGD Papers Entry Pubmed Entry | C. glabrata | |CAGL0B00242g |ERG4 |FKS1 |MATalpha1 |
Pais P, et al. (2022) Multiple genome analysis of Candida glabrata clinical isolates renders new insights into genetic diversity and drug resistance determinants. Microb Cell 9(11):174-189 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |CAGL0C04411g |CAGL0H03465g |CAGL0H09130g |CAGL0I06270g |CAGL0J00891g |EPA1 |ERG2 |ERG20 |ERG3 |ERG9 |FKS1 |FKS2 |PDR1 |RAD6 |MORE |
Rizzo M, et al. (2022) Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process. PLoS Genet 18(12):e1010576 CGD Papers Entry Pubmed Entry | C. albicans | |ULP1 |ULP2 |ULP3 |
Spruijtenburg B, et al. (2022) Confirmation of fifth Candida auris clade by whole genome sequencing. Emerg Microbes Infect :1-15 CGD Papers Entry Pubmed Entry | C. auris | |ERG11 |TAC1b |
Guinea J, et al. (2021) Whole genome sequencing confirms Candida albicans and Candida parapsilosis microsatellite sporadic and persistent clones causing outbreaks of candidemia in neonates Med Mycol CGD Papers Entry Pubmed Entry |
Li D, et al. (2021) Application of Machine Learning Classifier to Candida auris Drug Resistance Analysis. Front Cell Infect Microbiol 11:742062 CGD Papers Entry Pubmed Entry | C. auris | |ERG11 |
Min K, et al. (2021) Integrative multi-omics profiling reveals cAMP-independent mechanisms regulating hyphal morphogenesis in Candida albicans PLoS Pathog 17:e1009861 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |BCY1 |CYR1 |
Mixao V, et al. (2021) Extreme diversification driven by parallel events of massive loss of heterozygosity in the hybrid lineage of Candida albicans Genetics 217:iyaa004 CGD Papers Entry Pubmed Entry |
Munoz JF, et al. (2021) Clade-specific chromosomal rearrangements and loss of subtelomeric adhesins in Candida auris Genetics CGD Papers Entry Pubmed Entry | C. auris | |B9J08_000020 |B9J08_001049 |B9J08_001512 |B9J08_001533 |B9J08_001960 |B9J08_002580 |B9J08_004095 |B9J08_004119 |B9J08_004456 |B9J08_004881 |B9J08_004907 |B9J08_005531 |
| C. albicans | |ERG11 |
Oh SH, et al. (2021) Using Genomics to Shape the Definition of the Agglutinin-Like Sequence ( ALS) Family in the Saccharomycetales Front Cell Infect Microbiol 11:794529 CGD Papers Entry Pubmed Entry | C. albicans | |ALS1 |ALS2 |ALS3 |
Vazquez-Franco N, et al. (2021) Candida glabrata Hst1-Rfm1-Sum1 complex evolved to control virulence-related genes Fungal Genet Biol CGD Papers Entry Pubmed Entry | C. glabrata | |HST1 |RFM1 |SUM1 |
Xu Z, et al. (2021) De novo genome assembly of Candida glabrata reveals cell wall protein complement and structure of dispersed tandem repeat arrays Mol Microbiol 113:1209-1224 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |AED1 |AWP12 |AWP13 |CAGL0C00253g |CAGL0C00968g |CAGL0C01133g |CAGL0C03828g |CAGL0E00231g |CAGL0E01661g |CAGL0G06842g |CAGL0I07293g |CAGL0J01727g |CAGL0J01774g |CAGL0J03780g |MORE |
Yang F, et al. (2021) The fitness costs and benefits of trisomy of each Candida albicans chromosome Genetics CGD Papers Entry Pubmed Entry |
Jenull S, et al. (2020) ATAC-Seq Identifies Chromatin Landscapes Linked to the Regulation of Oxidative Stress in the Human Fungal Pathogen Candida albicans J Fungi (Basel) 6:E182 CGD Papers Entry Pubmed Entry Web Supplement Data | C. albicans | |CAP1 |
Sitterle E, et al. (2020) Large-scale genome mining allows identification of neutral polymorphisms and novel resistance mutations in genes involved in Candida albicans resistance to azoles and echinocandins. J Antimicrob Chemother CGD Papers Entry Pubmed Entry | C. albicans | |ERG11 |GSC1 |GSL1 |MRR1 |TAC1 |UPC2 |
Viana R, et al. (2020) Genome-Scale Metabolic Model of the Human Pathogen Candida albicans: A Promising Platform for Drug Target Prediction J Fungi (Basel) 6:E171 CGD Papers Entry Pubmed Entry | C. albicans | |DFR1 |ERG11 |ERG7 |FAS1 |FAS2 |FOL1 |GSC1 |GSL1 |TRR1 |URA1 |