| Reference | Species | Genes Addressed |
|---|
Aboagye G, et al. (2025) Antifungal susceptibility profiles of Candida and non-albicans species isolated from pregnant women: implications for emerging antimicrobial resistance in maternal health. Microbiol Spectr :e0078725 CGD Papers Entry Pubmed Entry |
Abou-Chakra N, et al. (2025) Exponential Clonal Expansion of 5-Fluorocytosine-Resistant Candida tropicalis and New Insights into Underlying Molecular Mechanisms. Emerg Infect Dis 31(5):977-985 CGD Papers Entry Pubmed Entry |
Anaele EN, et al. (2025) Trends in Prevalence of Yeast Species Associated With Urogenital Infection in Nsukka, Nigeria: An Overview of True Candida Species and Genotyping of Candida albicans hwp1-Heterozygous Isolates. Int J Microbiol 2025:3115363 CGD Papers Entry Pubmed Entry | C. albicans | |HWP1 |ITS1 |ITS2 |
Arsic Arsenijevic V, et al. (2025) Prevalence of Candida and Other Yeasts in Vulvovaginal Infections during Pregnancy: A 10-Year Serbian Survey. Mycopathologia 190(5):86 CGD Papers Entry Pubmed Entry |
Carpenter RE (2025) Candida tropicalis in the diabetic urinary tract: Biofilm resistance, genomic plasticity, and public health implications. Diagn Microbiol Infect Dis 113(3):117005 CGD Papers Entry Pubmed Entry |
Chavez JF, et al. (2025) Virulence Factors and Molecular Identification of Candida Species Causing Candidemia in Honduras. J Fungi (Basel) 11(7) CGD Papers Entry Pubmed Entry | C. albicans | |ITS1 |ITS2 |
Chung JY, et al. (2025) Effective treatment of systemic candidiasis by synergistic targeting of cell wall synthesis. Nat Commun 16(1):5532 CGD Papers Entry Pubmed Entry | C. albicans | |CHS3 |GSC1 |GSL1 |
| C. glabrata | |CHS3 |FKS1 |FKS2 |
Delma FZ, et al. (2025) Emergence of Flucytosine-Resistant Candida tropicalis Clade, the Netherlands. Emerg Infect Dis 31(7):1354-1364 CGD Papers Entry Pubmed Entry |
Ejaz H, et al. (2025) Investigation of multi-drug resistant Candida auris using species-specific molecular markers in immunocompromised patients from a tertiary care hospital in Quetta, Pakistan. PLoS One 20(4):e0319485 CGD Papers Entry Pubmed Entry | C. auris | |ITS1 |ITS2 |
El-Dawy EGAM, et al. (2025) Characterization and virulence of yeasts associated with neonatal thrush. BMC Microbiol 25(1):366 CGD Papers Entry Pubmed Entry | C. albicans | |PLB1 |SAP1 |
| C. glabrata | |PLB1 |
| C. parapsilosis | |CPAR2_209720 |
| C. dubliniensis | |Cd36_62110 |Cd36_63430 |
ElFeky DS, et al. (2025) Comparative evaluation of antifungal susceptibility testing methods of invasive Candida species and detection of FKS genes mutations in caspofungin intermediate and resistant isolates. BMC Infect Dis 25(1):114 CGD Papers Entry Pubmed Entry | C. glabrata | |FKS1 |FKS2 |
| C. parapsilosis | |FKS1 |FKS2 |
Emidio JJ, et al. (2025) Antifungal Evaluation of Benzoxazole and Benzothiazole Derivatives: An In Vitro and In Silico Study. Chem Biodivers :e202403459 CGD Papers Entry Pubmed Entry | C. albicans | |HSP90 |
Faraji R, et al. (2025) Evaluation of epidemiological, clinical, and microbiological features of vulvovaginal candidiasis. GMS Hyg Infect Control 20:Doc15 CGD Papers Entry Pubmed Entry |
Filho CDSMB, et al. (2025) Synthesis and Antimicrobial Evaluation of Chroman-4-One and Homoisoflavonoid Derivatives. Molecules 30(17) CGD Papers Entry Pubmed Entry | C. albicans | |APR1 |ARA1 |BMH1 |CAR1 |CDC28 |CEK2 |CYS4 |ERG1 |FBA1 |GCY1 |GRE3 |HOG1 |LTP1 |MKC1 |
Gao L, et al. (2025) In vitro and in vivo activity of 1,2,3,4,6-O-pentagalloyl-glucose against Candida albicans. Antimicrob Agents Chemother :e0177524 CGD Papers Entry Pubmed Entry | C. albicans | |ENO1 |
Guo YD, et al. (2025) Hyssopus cuspidatus Boriss Volatile Extract (SXC): A Dual-Action Antioxidant and Antifungal Agent Targeting Candida albicans Pathogenicity and Vulvovaginal Candidiasis via Host Oxidative Stress Modulation and Fungal Metabolic Reprogramming. Antioxidants (Basel) 14(9) CGD Papers Entry Pubmed Entry | C. albicans | |ALS3 |CYR1 |ECE1 |EFG1 |HWP1 |PDE2 |RAS1 |TUP1 |UME6 |
Huang SJ, et al. (2025) Emergence of invasive candidiasis with multiple Candida species exhibiting azole and echinocandin resistance. Front Microbiol 16:1550894 CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |ERG11 |FKS1 |FKS2 |PDH1 |PDR1 |SNQ2 |
Ibanez-Cervantes JL, et al. (2025) Association of ALS genes in strains of the genus Candida with cervical cytological alterations. Indian J Med Microbiol 54:100795 CGD Papers Entry Pubmed Entry | C. albicans | |ALS1 |ALS2 |ALS3 |ALS4 |ALS5 |ALS6 |ALS7 |ALS9 |
Jothi R, et al. (2025) Lupeol mitigates biofilm formation and attenuates virulence dimorphism in Candida albicans. Microb Pathog 208:107989 CGD Papers Entry Pubmed Entry | C. albicans | |CPH1 |EFG1 |HWP1 |RAS1 |TUP1 |UME6 |
Konwar A, et al. (2025) Insights into the evolution of Candidalysin and recent developments. Arch Microbiol 207(9):206 CGD Papers Entry Pubmed Entry | C. albicans | |ALS1 |ALS2 |ALS3 |ALS4 |ALS5 |ALS6 |ALS7 |ALS9 |BCR1 |BRG1 |CPH1 |CPH2 |CZF1 |ECE1 |MORE |
Lim SJ, et al. (2025) Elucidating the Virulence Roles of Secreted Aspartyl Proteinase (Sap1972) in Non-albicans Meyerozyma guilliermondii through Construction of a Structure-guided Mutant. Microb Pathog :107937 CGD Papers Entry Pubmed Entry |
Martins NRC, et al. (2025) Antifungal profile of menadione tethered to 1H-1,2,3-triazolyl-selenoester: synthesis, in vitro and in silico analyses. Bioorg Med Chem 130:118380 CGD Papers Entry Pubmed Entry | C. glabrata | |ERG11 |HSC82 |
Meral Ocal M, et al. (2025) Myricetin Exerts Antibiofilm Effects on Candida albicans by Targeting the RAS1/cAMP/EFG1 Pathway and Disruption of the Hyphal Network. J Fungi (Basel) 11(5) CGD Papers Entry Pubmed Entry | C. albicans | |ALS3 |CYR1 |ECE1 |EFG1 |HGC1 |HWP1 |RAS1 |UME6 |
Montenegro I, et al. (2025) Anticandidal activity of Clinopodium chilense essential oil. Front Pharmacol 16:1634250 CGD Papers Entry Pubmed Entry | C. albicans | |ALS9 |ERG11 |
Murillo MI, et al. (2025) Evaluation of the Antifungal Properties of Azomethine-Pyrazole Derivatives from a Structural Perspective. ChemistryOpen :e202500132 CGD Papers Entry Pubmed Entry | C. albicans | |ERG11 |
Namvar Z, et al. (2025) Expression of SAP1-3 genes in non-albicans Candida isolates in bovine raw milk and human sample. Folia Microbiol (Praha) CGD Papers Entry Pubmed Entry |
Okamoto M, et al. (2025) CRISPR-Cas9 RNP-Mediated Deletion of ERG25 in Non-albicans Candida Species, Including Candida auris. Med Mycol J 66(2):35-43 CGD Papers Entry Pubmed Entry | C. glabrata | |ERG25 |
| C. parapsilosis | |ERG25 |
| C. auris | |ERG25 |
Park HW, et al. (2025) Genotypic Analysis of Candida tropicalis Clinical Isolates From Korea via Multilocus Sequence Typing. Microbiologyopen 14(4):e70024 CGD Papers Entry Pubmed Entry |
Reitler P, et al. (2025) A screen to identify antifungal antagonists reveals a variety of pharmacotherapies that induce echinocandin tolerance in Candida albicans. Antimicrob Agents Chemother :e0048425 CGD Papers Entry Pubmed Entry | C. albicans | |BCK1 |C1_05370C_A |C6_02190C_A |CEK1 |CHK1 |CKA1 |CKA2 |CKB1 |CKB2 |CR_06040W_A |EFG1 |FRK1 |HOG1 |HSL1 |MORE |
Suwannaphong P, et al. (2025) Fluconazole tolerance and virulence adaptations of Candida albicans isolated from head and neck cancer patients. J Oral Microbiol 17(1):2559024 CGD Papers Entry Pubmed Entry | C. albicans | |ALS1 |ALS3 |CDR1 |CDR2 |ERG11 |HWP1 |MDR1 |SAP6 |