| Reference | Species | Other Genes Addressed |
|---|
Huang SJ, et al. (2025) Emergence of invasive candidiasis with multiple Candida species exhibiting azole and echinocandin resistance. Front Microbiol 16:1550894 CGD Papers Entry Pubmed Entry | C. glabrata | |ERG11 |FKS1 |FKS2 |PDH1 |PDR1 |SNQ2 |
Lee YH, et al. (2025) Rad6 and Bre1 ubiquitin ligase negatively regulate biofilm formation and virulence in Candida glabrata. J Infect :106595 CGD Papers Entry Pubmed Entry | C. glabrata | |BRE1 |CTA1 |EPA1 |EPA20 |EPA6 |ERG11 |FKS1 |FKS2 |GPX2 |RAD6 |SOD1 |YPS4 |YPS7 |
Miyazaki T, et al. (2025) Mechanisms of multidrug resistance caused by an Ipi1 mutation in the fungal pathogen Candida glabrata. Nat Commun 16(1):1023 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |CNA1 |CNB1 |IPI1 |IPI3 |PDH1 |PDR1 |PDR13 |RIX1 |SLT2 |SSB1 |SSB2 |
Nickels TJ and Cunningham KW (2025) Tn-seq screens in Candida glabrata treated with echinocandins and ibrexafungerp reveal pathways of antifungal resistance and cross-resistance. mSphere :e0027025 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |ALG6 |ALG8 |CIN5 |GAL11B |IPT1 |LAC1 |LAF1 |PDR1 |RSB1 |RTA1 |SLC1 |SSK2 |WHI2 |
Spettel K, et al. (2025) In vitro long-term exposure to chlorhexidine or triclosan induces cross-resistance against azoles in Nakaseomyces glabratus. Antimicrob Resist Infect Control 14(1):2 CGD Papers Entry Pubmed Entry | C. glabrata | |PDR1 |PMA1 |
Wang Y, et al. (2025) Role and mechanism of hexyl-aminolevulinate ethosome-mediated antimicrobial photodynamic therapy in reversing fluconazole resistance in Nakaseomyces glabrata (Candida glabrata). J Med Microbiol 74(9) CGD Papers Entry Pubmed Entry | C. glabrata | |EPA1 |ERG11 |PDR1 |
Xia C, et al. (2025) Fluconazole-induced changes in azole resistance and biofilm production in Candida glabrata in vitro. Diagn Microbiol Infect Dis 111(3):116683 CGD Papers Entry Pubmed Entry | C. glabrata | |ERG11 |PDH1 |PDR1 |SNQ2 |
Zheng L, et al. (2025) Uncovering the connection between tunicamycin-induced respiratory deficiency and reduced fluconazole tolerance in Candida glabrata. Front Microbiol 16:1528341 CGD Papers Entry Pubmed Entry | C. glabrata | |ERG1 |ERG11 |ERG2 |ERG24 |ERG25 |ERG26 |ERG27 |ERG28 |ERG3 |ERG4 |ERG5 |ERG6 |ERG7 |ERG9 |MORE |
Cardenas Parra LY, et al. (2024) Molecular Evaluation of the mRNA Expression of the ERG11, ERG3, CgCDR1, and CgSNQ2 Genes Linked to Fluconazole Resistance in Candida glabrata in a Colombian Population. J Fungi (Basel) 10(7) CGD Papers Entry Pubmed Entry | C. glabrata | |ERG11 |ERG3 |SNQ2 |
Chow EWL, et al. (2024) Genome-wide profiling of piggyBac transposon insertion mutants reveals loss of the F(1) F(0) ATPase complex causes fluconazole resistance in Candida glabrata. Mol Microbiol CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |ATP22 |ATP3 |PDH1 |PDR1 |SNQ2 |
Conway TP, et al. (2024) Overlapping coactivator function is required for transcriptional activation by the Candida glabrata Pdr1 transcription factor. Genetics CGD Papers Entry Pubmed Entry | C. glabrata | |ADA3 |ERG11 |PDH1 |PDR1 |SNF2 |SPT7 |
Conway TP, et al. (2024) Similarities and distinctions in the activation of the Candida glabrata Pdr1 regulatory pathway by azole and non-azole drugs. mSphere :e0079224 CGD Papers Entry Pubmed Entry | C. glabrata | |BRE5 |CNA1 |CRZ1 |ERG11 |ERG4 |GAL11A |PDR1 |UPC2A |
Elias D, et al. (2024) Changes in Ergosterol Biosynthesis Alter the Response to Cycloheximide, 4-Nitroquinoline-N-Oxide, Weak Organic Acids, and Virulence in Candida glabrata. J Fungi (Basel) 10(10) CGD Papers Entry Pubmed Entry | C. glabrata | |ERG6 |PDH1 |PDR1 |PDR12 |SNQ2 |
Liu Y, et al. (2024) N-Butylphthalide Potentiates the Effect of Fluconazole Against Drug-Resistant Candida glabrata and Candida tropicalis. Evidence for Its Mechanism of Action. Infect Drug Resist 17:2017-2029 CGD Papers Entry Pubmed Entry | C. glabrata | |COX1 |COX2 |COX3 |ERG11 |PDH1 |cytB |
Lopez-Marmolejo AL, et al. (2024) Niche-specific microevolution of Candida glabrata (Nakaseomyces glabrata) during an infection. Fungal Genet Biol :103891 CGD Papers Entry Pubmed Entry | C. glabrata | |PDH1 |PDR1 |SNQ2 |
Nickels TJ, et al. (2024) Tn-seq of the Candida glabrata reference strain CBS138 reveals epigenetic plasticity, structural variation, and intrinsic mechanisms of resistance to micafungin. G3 (Bethesda) CGD Papers Entry Pubmed Entry | C. glabrata | |FKS2 |PDR1 |
Saha D, et al. (2024) Candida glabrata maintains two HAP1 ohnologs, HAP1A and HAP1B, for distinct roles in ergosterol gene regulation to mediate sterol homeostasis under azole and hypoxic conditions. mSphere :e0052424 CGD Papers Entry Pubmed Entry | C. glabrata | |CYC1 |ERG11 |ERG2 |ERG3 |ERG5 |HAP1A |HAP1B |PDH1 |PDR1 |SNQ2 |
Zeitoun H, et al. (2024) Elucidation of the mechanisms of fluconazole resistance and repurposing treatment options against urinary Candida spp. isolated from hospitalized patients in Alexandria, Egypt. BMC Microbiol 24(1):383 CGD Papers Entry Pubmed Entry | C. albicans | |CDR2 |ERG11 |MDR1 |
| C. glabrata | |ERG11 |PDH1 |
Gale AN, et al. (2023) Redefining pleiotropic drug resistance in a pathogenic yeast: Pdr1 functions as a sensor of cellular stresses in Candida glabrata. mSphere :e0025423 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |ATP1 |ATP2 |CAGL0J00297g |CAGL0L03828g |CIN5 |DAP1 |ERG11 |LSC2 |PDR1 |RPL28 |TRP1 |TRP2 |UPC2A |
Gupta P, et al. (2023) Biochemical and metabolomic insights into antifungal mechanism of berberine against Candida glabrata. Appl Microbiol Biotechnol CGD Papers Entry Pubmed Entry | C. glabrata | |KRE1 |RLM1 |SLT2 |SUR4 |
Hatami F, et al. (2023) Molecular mechanisms of azole resistance in Candida glabrata isolated from oropharyngeal candidiasis in head and neck cancer patients. Arch Oral Biol 154:105757 CGD Papers Entry Pubmed Entry | C. glabrata | |ERG11 |PDH1 |PDR1 |
Miron-Ocampo A, et al. (2023) CWHM-974 is a fluphenazine derivative with improved antifungal activity against Candida albicans due to reduced susceptibility to multidrug transporter-mediated resistance mechanisms. Antimicrob Agents Chemother :e0056723 CGD Papers Entry Pubmed Entry | C. albicans | |CDR2 |MDR1 |MRR2 |TAC1 |
Okamoto M, et al. (2023) In Candida glabrata, ERMES Component GEM1 Controls Mitochondrial Morphology, mtROS, and Drug Efflux Pump Expression, Resulting in Azole Susceptibility. J Fungi (Basel) 9(2) CGD Papers Entry Pubmed Entry | C. glabrata | |GEM1 |MDM10 |MDM12 |MDM34 |MMM1 |PDH1 |PDR1 |
Vu BG, et al. (2023) Calcineurin is required for Candida glabrata Pdr1 transcriptional activation. mBio :e0241623 CGD Papers Entry Pubmed Entry | C. glabrata | |CNA1 |CNB1 |PDR1 |
Yenisehirli G, et al. (2023) Antifungal drug susceptibility profiles and molecular mechanisms of azole resistance in Candida blood stream isolates. Indian J Med Microbiol 45:100389 CGD Papers Entry Pubmed Entry | C. albicans | |CDR2 |ERG11 |MDR1 |
| C. glabrata | |ERG11 |PDH1 |
| C. parapsilosis | |ERG11 |MDR1 |
Bhakt P, et al. (2022) The SET-domain protein CgSet4 negatively regulates antifungal drug resistance via the ergosterol biosynthesis transcriptional regulator CgUpc2a. J Biol Chem 298(10):102485 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |ARO10 |AUS1 |ERG11 |ERG3 |ERG4 |ERG5 |FKS2 |PDH1 |PDR1 |ROX1 |SET1 |SET2 |SET3 |SET4 |MORE |
Gupta P and Poluri KM (2022) Elucidating the Eradication Mechanism of Perillyl Alcohol against Candida glabrata Biofilms: Insights into the Synergistic Effect with Azole Drugs. ACS Bio Med Chem Au 2(1):60-72 CGD Papers Entry Pubmed Entry | C. glabrata | |ATM1 |CHS3 |ECM33 |ECM7 |EPA6 |ERG1 |ERG5 |KRE1 |KRE2 |SWI4 |UPC2B |
Zhao JT, et al. (2022) FLO8 deletion leads to decreased adhesion and virulence with downregulated expression of EPA1, EPA6, and EPA7 in Candida glabrata Braz J Microbiol CGD Papers Entry Pubmed Entry | C. albicans | |CDR11 |CDR2 |FLO8 |SNQ2 |
| C. glabrata | |EPA1 |EPA6 |EPA7 |FLO8 |PDH1 |SNQ2 |
Gupta S, et al. (2021) Impact of Bacillus licheniformis SV1 Derived Glycolipid on Candida glabrata Biofilm. Curr Microbiol 78(5):1813-1822 CGD Papers Entry Pubmed Entry | C. glabrata | |AUS1 |ERG10 |ERG11 |ERG2 |ERG3 |ERG4 |FKS1 |KRE1 |
Yao D, et al. (2021) Pyrogallol and Fluconazole Interact Synergistically In Vitro against Candida glabrata through an Efflux-Associated Mechanism. Antimicrob Agents Chemother 65(7):e0010021 CGD Papers Entry Pubmed Entry | C. glabrata | |PDH1 |PDR1 |