| Reference | Species | Other Genes Addressed |
|---|
Okamoto M, et al. (2023) In Candida glabrata, ERMES Component GEM1 Controls Mitochondrial Morphology, mtROS, and Drug Efflux Pump Expression, Resulting in Azole Susceptibility. J Fungi (Basel) 9(2) CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |GEM1 |MDM10 |MDM12 |MDM34 |MMM1 |PDR1 |
Kumari S, et al. (2022) Unmasking of CgYor1-Dependent Azole Resistance Mediated by Target of Rapamycin (TOR) and Calcineurin Signaling in Candida glabrata MBio CGD Papers Entry Pubmed Entry | C. glabrata | |ADP1 |ATM1 |AUS1 |CDR1 |MDL1 |PDR12 |PXA1 |PXA2 |ROA1 |SNQ2 |YBT1 |YCF1 |YOR1 |
Nishimoto AT, et al. (2019) Impact of the Major Candida glabrata Triazole Resistance Determinants on the Activity of the Novel Investigational Tetrazoles VT-1598 and VT-1161. Antimicrob Agents Chemother 63(10) CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |PDR1 |SNQ2 |UPC2A |
Ni Q, et al. (2018) CgPDR1 gain-of-function mutations lead to azole-resistance and increased adhesion in clinical Candida glabrata strains. Mycoses 61(7):430-440 CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |EPA1 |PDR1 |SNQ2 |
Whaley SG, et al. (2018) Relative Contribution of the ABC Transporters Cdr1, Pdh1, and Snq2 to Azole Resistance in Candida glabrata. Antimicrob Agents Chemother 62(10) CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |PDR1 |SNQ2 |
Nagayoshi Y, et al. (2017) Unexpected effects of azole transporter inhibitors on antifungal susceptibility in Candida glabrata and other pathogenic Candida species. PLoS One 12(7):e0180990 CGD Papers Entry Pubmed Entry | C. albicans | |C4_02040W_A |CDR1 |CDR11 |CDR2 |
| C. glabrata | |CDR1 |PDR1 |
| C. parapsilosis | |CDR1 |
Schwarzmuller T, et al. (2014) Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog 10(6):e1004211 CGD Papers Entry Pubmed Entry Web Supplement Data | C. glabrata | |ACE2 |ACO1 |ACO2 |ADA2 |ADA3 |ADP1 |AFT2 |ALG5 |ALG6 |AMT1 |ANC1 |ANP1 |AP5 |ARB1 |MORE |
Walker B, et al. (2014) Milbemycin A4 oxime as a probe of azole transport in Candida glabrata. FEMS Yeast Res 14(5):755-61 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. glabrata | |CDR1 |SNQ2 |YOR1 |
Paul S, et al. (2011) Regulation of the CgPdr1 transcription factor from the pathogen Candida glabrata. Eukaryot Cell 10(2):187-97 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. glabrata | |CAGL0J06226g |CDR1 |GAL11A |GAL11B |HO |PDR1 |SRB8 |
Yoo JI, et al. (2010) Gene Expression and Identification Related to Fluconazole Resistance of Candida glabrata Strains. Osong Public Health Res Perspect 1(1):36-41 CGD Papers Entry Pubmed Entry | C. glabrata | |CDR1 |ERG11 |ERG3 |
Posteraro B, et al. (2006) Caspofungin activity against clinical isolates of azole cross-resistant Candida glabrata overexpressing efflux pump genes. J Antimicrob Chemother 58(2):458-61 CGD Papers Entry Pubmed Entry Reference LINKOUT Reference LINKOUT Reference LINKOUT Reference LINKOUT | C. glabrata | |CDR1 |
Wada S, et al. (2005) Phosphorylation of candida glabrata ATP-binding cassette transporter Cdr1p regulates drug efflux activity and ATPase stability. J Biol Chem 280(1):94-103 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. glabrata | |CDR1 |
Izumikawa K, et al. (2003) Function of Candida glabrata ABC transporter gene, PDH1. Yeast 20(3):249-61 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. glabrata | |CDR1 |
Wada S, et al. (2002) Candida glabrata ATP-binding cassette transporters Cdr1p and Pdh1p expressed in a Saccharomyces cerevisiae strain deficient in membrane transporters show phosphorylation-dependent pumping properties. J Biol Chem 277(48):46809-21 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. glabrata | |CDR1 |
Sanglard D, et al. (2001) Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata. Antimicrob Agents Chemother 45(4):1174-83 CGD Papers Entry Pubmed Entry Reference LINKOUT | C. glabrata | |CDR1 |SNQ2 |URA3 |