Cookbook/Matplotlib/Plotting_Images_with_Special_Values - SciPy wiki dump

This is an archival dump of old wiki content --- see scipy.org for current material.
Please see http://scipy-cookbook.readthedocs.org/

Image plotting requires data, a colormap, and a normalization. A common desire is to show missing data or other values in a specified color. The following code shows an example of how to do this.

The code creates a new SentinelMap Colormap subclass and a SentinelNorm norm subclass.

The SentinelMap initialization takes a dictionary of value, color pairs. The data is already assumed to be normalized (except for the sentinels which are preserved). The RGB values at the sentinel values are replaced by the specified colors.

The SentinelNorm class normalizes the data in the standard way except for one sublety. SentinelNorm takes an "ignore" argument. The ignored values need to be excluded from the normalization so that they do not skew the results.

I use a not particularly wonderful algorithm of explicitly sorting the data and using the first non-sentinel values to define the min and max. This can probably be improved, but for my purposes was easy and sufficient. The data is then normalized including the sentinels. Finally, the sentinels are replaced.

 1 from matplotlib.colors import Colormap, normalize
 2 import matplotlib.numerix as nx
 3 from types import IntType, FloatType, ListType
 4 
 5 class SentinelMap(Colormap):
 6  def __init__(self, cmap, sentinels={}):
 7  # boilerplate stuff
 8  self.N = cmap.N
 9  self.name = 'SentinelMap'
 10  self.cmap = cmap
 11  self.sentinels = sentinels
 12  for rgb in sentinels.values():
 13  if len(rgb)!=3:
 14  raise ValueError('sentinel color must be RGB')
 15 
 16 
 17  def __call__(self, scaledImageData, alpha=1):
 18  # assumes the data is already normalized (ignoring sentinels)
 19  # clip to be on the safe side
 20  rgbaValues = self.cmap(nx.clip(scaledImageData, 0.,1.))
 21 
 22  #replace sentinel data with sentinel colors
 23  for sentinel,rgb in self.sentinels.items():
 24  r,g,b = rgb
 25  rgbaValues[:,:,0] = nx.where(scaledImageData==sentinel, r, rgbaValues[:,:,0])
 26  rgbaValues[:,:,1] = nx.where(scaledImageData==sentinel, g, rgbaValues[:,:,1])
 27  rgbaValues[:,:,2] = nx.where(scaledImageData==sentinel, b, rgbaValues[:,:,2])
 28  rgbaValues[:,:,3] = nx.where(scaledImageData==sentinel, alpha, rgbaValues[:,:,3])
 29 
 30  return rgbaValues
 31 
 32 class SentinelNorm(normalize):
 33  """
 34  Leave the sentinel unchanged
 35  """
 36  def __init__(self, ignore=[], vmin=None, vmax=None):
 37  self.vmin=vmin
 38  self.vmax=vmax
 39 
 40  if type(ignore) in [IntType, FloatType]:
 41  self.ignore = [ignore]
 42  else:
 43  self.ignore = list(ignore)
 44 
 45 
 46  def __call__(self, value):
 47 
 48  vmin = self.vmin
 49  vmax = self.vmax
 50 
 51  if type(value) in [IntType, FloatType]:
 52  vtype = 'scalar'
 53  val = array([value])
 54  else:
 55  vtype = 'array'
 56  val = nx.asarray(value)
 57 
 58  # if both vmin is None and vmax is None, we'll automatically
 59  # norm the data to vmin/vmax of the actual data, so the
 60  # clipping step won't be needed.
 61  if vmin is None and vmax is None:
 62  needs_clipping = False
 63  else:
 64  needs_clipping = True
 65 
 66  if vmin is None or vmax is None:
 67  rval = nx.ravel(val)
 68  #do this if sentinels (values to ignore in data)
 69  if self.ignore:
 70  sortValues=nx.sort(rval)
 71  if vmin is None: 
 72  # find the lowest non-sentinel value
 73  for thisVal in sortValues:
 74  if thisVal not in self.ignore:
 75  vmin=thisVal #vmin is the lowest non-sentinel value
 76  break
 77  else:
 78  vmin=0.
 79  if vmax is None: 
 80  for thisVal in sortValues[::-1]:
 81  if thisVal not in self.ignore:
 82  vmax=thisVal #vmax is the greatest non-sentinel value
 83  break
 84  else:
 85  vmax=0.
 86  else:
 87  if vmin is None: vmin = min(rval)
 88  if vmax is None: vmax = max(rval)
 89  if vmin > vmax:
 90  raise ValueError("minvalue must be less than or equal to maxvalue")
 91  elif vmin==vmax:
 92  return 0.*value
 93  else:
 94  if needs_clipping:
 95  val = nx.clip(val,vmin, vmax)
 96  result = (1.0/(vmax-vmin))*(val-vmin)
 97 
 98  # replace sentinels with original (non-normalized) values
 99  for thisIgnore in self.ignore:
 100  result = nx.where(val==thisIgnore,thisIgnore,result)
 101 
 102  if vtype == 'scalar':
 103  result = result[0]
 104  return result
 105 
 106 
 107 if __name__=="__main__":
 108  import pylab
 109  import matplotlib.colors
 110  n=100
 111 
 112  # create a random array
 113  X = nx.mlab.rand(n,n)
 114  cmBase = pylab.cm.jet
 115 
 116  # plot it array as an image
 117  pylab.figure(1)
 118  pylab.imshow(X, cmap=cmBase, interpolation='nearest')
 119 
 120  # define the sentinels
 121  sentinel1 = -10
 122  sentinel2 = 10
 123 
 124  # replace some data with sentinels
 125  X[int(.1*n):int(.2*n), int(.5*n):int(.7*n)] = sentinel1
 126  X[int(.6*n):int(.8*n), int(.2*n):int(.3*n)] = sentinel2
 127 
 128  # define the colormap and norm
 129  rgb1 = (0.,0.,0.)
 130  rgb2 = (1.,0.,0.)
 131  cmap = SentinelMap(cmBase, sentinels={sentinel1:rgb1,sentinel2:rgb2,})
 132  norm = SentinelNorm(ignore=[sentinel1,sentinel2])
 133 
 134  # plot with the modified colormap and norm
 135  pylab.figure(2)
 136  pylab.imshow(X, cmap = cmap, norm=norm, interpolation='nearest')
 137 
 138  pylab.show()

If the preceeding code is run from a prompt, two images are generated. The first is a pristine image of random data. The second image is the data modified by setting some blocks to sentinel values and then plotting the sentinels in specific colors. A sample result is shown below.

sentinel_pristine.png

sentinel.png


CategoryCookbookMatplotlib

SciPy: Cookbook/Matplotlib/Plotting_Images_with_Special_Values (last edited 2015年10月24日 17:48:23 by anonymous)

AltStyle によって変換されたページ (->オリジナル) /