Namespaces
Variants
Actions

std::beta, std::betaf, std::betal

From cppreference.com
 
 
Numerics library
 
 
Defined in header <cmath>
(1)
float       beta ( float x, float y );

double      beta ( double x, double y );

long double beta ( long double x, long double y );
(since C++17)
(until C++23)
/* floating-point-type */ beta( /* floating-point-type */ x,
                                /* floating-point-type */ y );
(since C++23)
float       betaf( float x, float y );
(2) (since C++17)
long double betal( long double x, long double y );
(3) (since C++17)
Defined in header <cmath>
template< class Arithmetic1, class Arithmetic2 >
/* common-floating-point-type */ beta( Arithmetic1 x, Arithmetic2 y );
(A) (since C++17)
1-3) Computes the Beta function of x and y. The library provides overloads of std::beta for all cv-unqualified floating-point types as the type of the parameters x and y.(since C++23)
A) Additional overloads are provided for all other combinations of arithmetic types.

[edit] Parameters

x, y - floating-point or integer values

[edit] Return value

If no errors occur, value of the beta function of x and y, that is \(\int_{0}^{1}{ {t}^{x-1}{(1-t)}^{y-1}\mathsf{d}t}\)1
0
tx-1
(1-t)(y-1)
dt
, or, equivalently, \(\frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}\)
Γ(x)Γ(y)
Γ(x+y)
is returned.

[edit] Error handling

Errors may be reported as specified in math_errhandling .

  • If any argument is NaN, NaN is returned and domain error is not reported.
  • The function is only required to be defined where both x and y are greater than zero, and is allowed to report a domain error otherwise.

[edit] Notes

Implementations that do not support C++17, but support ISO 29124:2010, provide this function if __STDCPP_MATH_SPEC_FUNCS__ is defined by the implementation to a value at least 201003L and if the user defines __STDCPP_WANT_MATH_SPEC_FUNCS__ before including any standard library headers.

Implementations that do not support ISO 29124:2010 but support TR 19768:2007 (TR1), provide this function in the header tr1/cmath and namespace std::tr1.

An implementation of this function is also available in boost.math.

std::beta(x, y) equals std::beta(y, x).

When x and y are positive integers, std::beta(x, y) equals \(\frac{(x-1)!(y-1)!}{(x+y-1)!}\)
(x-1)!(y-1)!
(x+y-1)!
. Binomial coefficients can be expressed in terms of the beta function: \(\binom{n}{k} = \frac{1}{(n+1)B(n-k+1,k+1)}\)

n
k


=
1
(n+1)Β(n-k+1,k+1)
.

The additional overloads are not required to be provided exactly as (A). They only need to be sufficient to ensure that for their first argument num1 and second argument num2:

  • If num1 or num2 has type long double, then std::beta(num1, num2) has the same effect as std::beta(static_cast<long double>(num1),
              static_cast<long double>(num2))
    .
  • Otherwise, if num1 and/or num2 has type double or an integer type, then std::beta(num1, num2) has the same effect as std::beta(static_cast<double>(num1),
              static_cast<double>(num2))
    .
  • Otherwise, if num1 or num2 has type float, then std::beta(num1, num2) has the same effect as std::beta(static_cast<float>(num1),
              static_cast<float>(num2))
    .
(until C++23)

If num1 and num2 have arithmetic types, then std::beta(num1, num2) has the same effect as std::beta(static_cast</* common-floating-point-type */>(num1),
          static_cast</* common-floating-point-type */>(num2))
, where /* common-floating-point-type */ is the floating-point type with the greatest floating-point conversion rank and greatest floating-point conversion subrank between the types of num1 and num2, arguments of integer type are considered to have the same floating-point conversion rank as double.

If no such floating-point type with the greatest rank and subrank exists, then overload resolution does not result in a usable candidate from the overloads provided.

(since C++23)

[edit] Example

Run this code
#include <cassert>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <numbers>
#include <string>
 
long binom_via_beta(int n, int k)
{
 return std::lround (1 / ((n + 1) * std::beta(n - k + 1, k + 1)));
}
 
long binom_via_gamma(int n, int k)
{
 return std::lround (std::tgamma (n + 1) /
 (std::tgamma (n - k + 1) * 
 std::tgamma (k + 1)));
}
 
int main()
{
 std::cout << "Pascal's triangle:\n";
 for (int n = 1; n < 10; ++n)
 {
 std::cout << std::string (20 - n * 2, ' ');
 for (int k = 1; k < n; ++k)
 {
 std::cout << std::setw (3) << binom_via_beta(n, k) << ' ';
 assert (binom_via_beta(n, k) == binom_via_gamma(n, k));
 }
 std::cout << '\n';
 }
 
 // A spot-check
 const long double p = 0.123; // a random value in [0, 1]
 const long double q = 1 - p;
 const long double π = std::numbers::pi_v <long double>;
 std::cout << "\n\n" << std::setprecision (19)
 << "β(p,1-p) = " << std::beta(p, q) << '\n'
 << "π/sin(π*p) = " << π / std::sin (π * p) << '\n';
}

Output:

Pascal's triangle:
 
 2
 3 3
 4 6 4
 5 10 10 5
 6 15 20 15 6
 7 21 35 35 21 7
 8 28 56 70 56 28 8
 9 36 84 126 126 84 36 9
 
β(p,1-p) = 8.335989149587307836
π/sin(π*p) = 8.335989149587307834

[edit] See also

(C++11)(C++11)(C++11)
gamma function
(function) [edit]

[edit] External links

Weisstein, Eric W. "Beta Function." From MathWorld — A Wolfram Web Resource.
Retrieved from "https://en.cppreference.com/mwiki/index.php?title=cpp/numeric/special_functions/beta&oldid=160789"

AltStyle によって変換されたページ (->オリジナル) /