std::tuple_element<std::complex>
From cppreference.com
C++
Feature test macros (C++20)
Concepts library (C++20)
Metaprogramming library (C++11)
Ranges library (C++20)
Filesystem library (C++17)
Concurrency support library (C++11)
Execution control library (C++26)
Numerics library
Interpolations
Generic numeric operations
C-style checked integer arithmetic
Mathematical special functions (C++17)
Mathematical constants (C++20)
Basic linear algebra algorithms (C++26)
Data-parallel types (SIMD) (C++26)
Floating-point environment (C++11)
Bit manipulation (C++20)
Saturation arithmetic (C++26)
(C++17)
(C++17)
(C++20)
(C++20)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
(C++26)
std::complex
Hyperbolic functions
Helper types
(C++26)
tuple_element<std::complex>
(C++26)
Defined in header
<complex>
template< std::size_t I, class T >
struct tuple_element<I, std::complex <T>>;
(since C++26)
struct tuple_element<I, std::complex <T>>;
The partial specializations of std::tuple_element for std::complex provide compile-time access to the underlying real and imaginary number type of a complex
, using tuple-like syntax. They are provided for structured binding support. The program is ill-formed if I >= 2.
Contents
[edit] Member types
Member type
Definition
type
T
[edit] Notes
Feature-test macro | Value | Std | Feature |
---|---|---|---|
__cpp_lib_tuple_like |
202311L |
(C++26) | Add tuple protocol to std::complex |
[edit] Example
Run this code
#include <complex> #include <type_traits> static_assert([z = std::complex <float>()] { using T = decltype(z); return #if __cpp_lib_tuple_like >= 202311L std::is_same_v <std::tuple_element_t <0, T>, float> && std::is_same_v <std::tuple_element_t <1, T>, float> && #endif std::is_same_v <T::value_type, float>; }()); int main() {}
[edit] See also
Structured binding (C++17)
binds the specified names to sub-objects or tuple elements of the initializer[edit]
(C++26)
(function template) [edit]