std::lexicographical_compare
(on partitioned ranges)
<algorithm>
bool lexicographical_compare( InputIt1 first1, InputIt1 last1,
class ForwardIt1, class ForwardIt2 >
bool lexicographical_compare( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
bool lexicographical_compare( InputIt1 first1, InputIt1 last1,
InputIt2 first2, InputIt2 last2,
class ForwardIt1, class ForwardIt2, class Compare >
bool lexicographical_compare( ExecutionPolicy&& policy,
ForwardIt1 first1, ForwardIt1 last1,
ForwardIt2 first2, ForwardIt2 last2,
Checks if the first range [
first1,
last1)
is lexicographically less than the second range [
first2,
last2)
.
std::is_execution_policy_v <std::decay_t <ExecutionPolicy>> is true.
(until C++20)std::is_execution_policy_v <std::remove_cvref_t <ExecutionPolicy>> is true.
(since C++20)Lexicographical comparison is an operation with the following properties:
The signature of the comparison function should be equivalent to the following:
bool cmp(const Type1& a, const Type2& b);
While the signature does not need to have const&, the function must not modify the objects passed to it and must be able to accept all values of type (possibly const) Type1
and Type2
regardless of value category (thus, Type1& is not allowed, nor is Type1 unless for Type1
a move is equivalent to a copy(since C++11)).
The types Type1 and Type2 must be such that objects of types InputIt1 and InputIt2 can be dereferenced and then implicitly converted to both Type1 and Type2.
InputIt1, InputIt2
must meet the requirements of LegacyInputIterator.
ForwardIt1, ForwardIt2
must meet the requirements of LegacyForwardIterator.
Compare
must meet the requirements of Compare.
true if the first range is lexicographically less than the second, otherwise false.
Given \(\scriptsize N_1\)N1 as std::distance (first1, last1) and \(\scriptsize N_2\)N2 as std::distance (first2, last2):
The overloads with a template parameter named ExecutionPolicy
report errors as follows:
ExecutionPolicy
is one of the standard policies, std::terminate is called. For any other ExecutionPolicy
, the behavior is implementation-defined.
lexicographical_compare (1) |
---|
template<class InputIt1, class InputIt2> bool lexicographical_compare(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2) { for (; (first1 != last1) && (first2 != last2); ++first1, (void) ++first2) { if (*first1 < *first2) return true; if (*first2 < *first1) return false; } return (first1 == last1) && (first2 != last2); } |
lexicographical_compare (3) |
template<class InputIt1, class InputIt2, class Compare> bool lexicographical_compare(InputIt1 first1, InputIt1 last1, InputIt2 first2, InputIt2 last2, Compare comp) { for (; (first1 != last1) && (first2 != last2); ++first1, (void) ++first2) { if (comp(*first1, *first2)) return true; if (comp(*first2, *first1)) return false; } return (first1 == last1) && (first2 != last2); } |
#include <algorithm> #include <iostream> #include <random> #include <vector> void print(const std::vector <char>& v, auto suffix) { for (char c : v) std::cout << c << ' '; std::cout << suffix; } int main() { std::vector <char> v1{'a', 'b', 'c', 'd'}; std::vector <char> v2{'a', 'b', 'c', 'd'}; for (std::mt19937 g{std::random_device {}()}; !std::lexicographical_compare(v1.begin(), v1.end(), v2.begin(), v2.end());) { print(v1, ">= "); print(v2, '\n'); std::shuffle (v1.begin(), v1.end(), g); std::shuffle (v2.begin(), v2.end(), g); } print(v1, "< "); print(v2, '\n'); }
Possible output:
a b c d >= a b c d d a b c >= c b d a b d a c >= a d c b a c d b < c d a b
The following behavior-changing defect reports were applied retroactively to previously published C++ standards.
DR | Applied to | Behavior as published | Correct behavior |
---|---|---|---|
LWG 142 | C++98 | at most \(\scriptsize \min(N_1,N_2)\)min(N1,N2) comparisons were allowed, but that is not possible (equivalence is determined by 2 comparisons) |
doubled the limit |
LWG 1205 | C++98 | the results of lexicographical comparisons involving empty ranges were unclear | made clear |