pandas.core.resample.Resampler.sum#

finalResampler.sum(numeric_only=False, min_count=0)[source] #

Compute sum of group values.

This method provides a simple way to compute the sum of values within each resampled group, particularly useful for aggregating time-based data into daily, monthly, or yearly sums.

Parameters:
numeric_onlybool, default False

Include only float, int, boolean columns.

Changed in version 2.0.0: numeric_only no longer accepts None.

min_countint, default 0

The required number of valid values to perform the operation. If fewer than min_count non-NA values are present the result will be NA.

Returns:
Series or DataFrame

Computed sum of values within each group.

See also

core.resample.Resampler.mean

Compute mean of groups, excluding missing values.

core.resample.Resampler.count

Compute count of group, excluding missing values.

DataFrame.resample

Resample time-series data.

Series.sum

Return the sum of the values over the requested axis.

Examples

>>> ser = pd.Series(
...  [1, 2, 3, 4],
...  index=pd.DatetimeIndex(
...  ["2023年01月01日", "2023年01月15日", "2023年02月01日", "2023年02月15日"]
...  ),
... )
>>> ser
2023年01月01日 1
2023年01月15日 2
2023年02月01日 3
2023年02月15日 4
dtype: int64
>>> ser.resample("MS").sum()
2023年01月01日 3
2023年02月01日 7
Freq: MS, dtype: int64
On this page

This Page