pandas.tseries.offsets.CustomBusinessDay#
- classpandas.tseries.offsets.CustomBusinessDay#
DateOffset subclass representing possibly n custom business days.
In CustomBusinessDay we can use custom weekmask, holidays, and calendar.
- Parameters:
- nint, default 1
The number of days represented.
- normalizebool, default False
Normalize start/end dates to midnight before generating date range.
- weekmaskstr, Default ‘Mon Tue Wed Thu Fri’
Weekmask of valid business days, passed to
numpy.busdaycalendar.- holidayslist
List/array of dates to exclude from the set of valid business days, passed to
numpy.busdaycalendar.- calendarnp.busdaycalendar
Calendar to integrate.
- offsettimedelta, default timedelta(0)
Time offset to apply.
Examples
In the example below the default parameters give the next business day.
>>> ts = pd.Timestamp(2022, 8, 5, 16) >>> ts + pd.offsets.CustomBusinessDay() Timestamp('2022年08月08日 16:00:00')
Business days can be specified by
weekmaskparameter. To convert the returned datetime object to its string representation the function strftime() is used in the next example.>>> importdatetimeasdt >>> freq = pd.offsets.CustomBusinessDay(weekmask="Mon Wed Fri") >>> pd.date_range(dt.datetime(2022, 12, 10), dt.datetime(2022, 12, 21), ... freq=freq).strftime('%a%d %b %Y %H:%M') Index(['Mon 12 Dec 2022 00:00', 'Wed 14 Dec 2022 00:00', 'Fri 16 Dec 2022 00:00', 'Mon 19 Dec 2022 00:00', 'Wed 21 Dec 2022 00:00'], dtype='object')
Using NumPy business day calendar you can define custom holidays.
>>> importdatetimeasdt >>> bdc = np.busdaycalendar(holidays=['2022年12月12日', '2022年12月14日']) >>> freq = pd.offsets.CustomBusinessDay(calendar=bdc) >>> pd.date_range(dt.datetime(2022, 12, 10), dt.datetime(2022, 12, 25), freq=freq) DatetimeIndex(['2022年12月13日', '2022年12月15日', '2022年12月16日', '2022年12月19日', '2022年12月20日', '2022年12月21日', '2022年12月22日', '2022年12月23日'], dtype='datetime64[ns]', freq='C')
If you want to shift the result on n day you can use the parameter
offset.>>> pd.Timestamp(2022, 8, 5, 16) + pd.offsets.CustomBusinessDay(1) Timestamp('2022年08月08日 16:00:00')
>>> importdatetimeasdt >>> ts = pd.Timestamp(2022, 8, 5, 16) >>> ts + pd.offsets.CustomBusinessDay(1, offset=dt.timedelta(days=1)) Timestamp('2022年08月09日 16:00:00')
Attributes
baseReturns a copy of the calling offset object with n=1 and all other attributes equal.
Return a string representing the frequency.
Return a dict of extra parameters for the offset.
Return a string representing the base frequency.
offsetAlias for self._offset.
Methods
copy()Return a copy of the frequency.
(DEPRECATED) Return boolean whether the frequency is a unit frequency (n=1).
is_month_end(ts)Return boolean whether a timestamp occurs on the month end.
is_month_start(ts)Return boolean whether a timestamp occurs on the month start.
is_on_offset(dt)Return boolean whether a timestamp intersects with this frequency.
is_quarter_end(ts)Return boolean whether a timestamp occurs on the quarter end.
is_quarter_start(ts)Return boolean whether a timestamp occurs on the quarter start.
is_year_end(ts)Return boolean whether a timestamp occurs on the year end.
is_year_start(ts)Return boolean whether a timestamp occurs on the year start.
rollback(dt)Roll provided date backward to next offset only if not on offset.
rollforward(dt)Roll provided date forward to next offset only if not on offset.