Showing posts with label new england orogen. Show all posts
Showing posts with label new england orogen. Show all posts

Friday, 9 December 2022

OzGeographics

Just a quick post to draw attention to a great YouTuber... and to keep a post or two going to show that this blog is still active (just). The YouTube channel is OzGeographics and can be found here OzGeographics - YouTube. However, I need to draw attention to a really good video which outlines a lot of the geological history of the northeast of this state, this video I found really interesting because it also shows just how potentially devastating the volcanism in our region was. Super-volcano after super-volcano apparently formed much of the New England and Northern Tablelands areas.

The Chain of Super Volcanoes That Caused The Worst Mass Extinction on Earth - YouTube


Saturday, 28 January 2017

Stunning in Red and White

A friend and colleague showed me his new lifestyle property on the edge of Armidale a couple of weeks ago. He is an observant soil scientist and noted that his land consisted of poor quality soils which grew only resilient grasses and some typical New England gum, stringy-bark and box woodland. He was curious about the rocks that were common on the surface of the dusty grey-brown soil. I was not surprised of the poor soils because the property is located on a geological unit called the Sandon Beds.

The Sandon Beds are common in the Armidale district, especially just to the north of the town. They were laid down sometime during the Devonian to Carboniferous periods. The rocks of the Sandon Beds are varied and include mudstones, conglomerates, volcanics and bio-chemical sedimentary rocks. The deposition of the unit was in the ocean debris flows from the continental shelf would form turbidites (coarse to fine grained repeating sequences), layers of fine mud would accumulate and occasional basalt volcanic rocks would occur. Sometimes, while a long distance from landmasses or spreading ridges very little would happen - only the gentle settling of dead primitive ocean organisms with silica skeletons.
Brecciated Jasper (chert) of the Sandon Beds

The settling of silica on the sea bed produces a rock called chert. It is common in the Sandon Beds with a red colour. The chert occurs in beds interspersed with dull mudstones, siltstones and the like. Possibly because of regional scale metamorphism or the effect of fluids in the rock the chert has been affected and displays its red colour. Because of the red colour it is often referred to as Jasper which is seen by some as a semi-precious stone.

Throughout my friend's property could be traced lines of chert running essentially north-south. This is because the beds have been tilted to a nearly vertical direction. There was nothing out of the ordinary with these beds but in one area some of the red chert caught my eye. I could not see the actual outcrop but scattered around one little area was red chert with bright white quartz veins. The chert had been broken apart and re-cemented together with the quartz rich fluid. The result was quite striking, a stunning red and white. In this one little area, at some time after the chert had formed and turned into hard rock it had been blasted apart apparently by hot fluids. A 'brecciated jasper' occurring in a little area that just happened to be on a friends new property just ready to be discovered.

Thursday, 1 January 2015

The name of Paddy's Emu? At last a good answer

Paddy's flat is an area that many consider the middle of nowhere. It is not a well known area but it probably should be. There is a nearby place called Pretty Gully and this name gives a better indication of the Paddy's Flat area. It is some of the headwaters for the mighty Clarence River and includes major tributaries such as the Cataract River and Emu Creek. Researchers have returned to the Paddy's Flat area numerous times for more than a hundred years to try and resolve the tricky geology. But agreement on the geological relationships of the area has been mainly unreachable. However, one of the latest papers in the Australian Journal of Earth Sciences may have resolved many of those issues.

Gideon Rosenbaum and his team from the University of Queensland has been responsible for huge advances in geological knowledge in the Northern Rivers headwaters. The latest paper from Gideon Rosenbaum's team (Hoy et al. 2014) is another for which we should be thankful. The level of research by local universities is sadly very close to non-existent and one of the preeminent research universities has thankfully filled some of the gaps. But, I digress. What is so great about the Hoy et al (2014) paper?

The many ideas about the Stratigraphy of the Emu Creek Block.
from Hoy et al (2014)
There are many great things in Hoy et al (2014) but to me the biggest is something I've struggled with for a few years. It is how and when the area formed. It demonstrated that some of the rocks of the area probably formed in the same geological environment and time as those to the west of Tamworth. Hoy et al (2014) has resolved the three stratigraphic units of the Emu Creek Block. In doing so has demonstrated that the block was formed during the late Carboniferous period. This was when a great unit of subducting crust was sliding from the west under the New England region to the east. According to Hoy et al (2014) the rocks seem to have been deposited in a shallow ocean basin (a fore-arc basin) formed at the front edge of a chain of volcanoes (a volcanic arc). A modern day active fore-arc basin is the area between Sumatra Island and its offshore islands in Indonesia. This means it was the same processes that occurred in the Tamworth area. At the same time it showed just how big the continental collision zones were that created the New England region.

In proposing a new stratigraphy for the Paddy's Flat area, Hoy et al (2014) has now come close ending more than 100 years of head-scratching. There has been more than eight different relationships proposed for the units in the Emu Creek Block starting from the first in 1906. The best one until now was probably the Geological Survey of Queensland (Murray et al 1981). Hoy et al (2014) proposes that the youngest unit in the block is the Emu Creek Formation which is overlain by the Paddy's Flat Formation which was deposited after a haitus. The Paddy's Flat Formation is then overlain by the Razorback Creek Mudstone. Hoy et al (2014) dated zircons in the rocks using the uranium and lead composition and compared this with the age of the fossils found in the area. The results were inconsistent with the Paddy's Flat fossils. This lead to the conclusion that in-situ fossils are present in the Emu Creek Formation but probably not in the Paddy's Flat Formation. Any fossils that were found within the Paddy's Flat Formation were probably eroded out of the Emu Creek Formation. Coming to this conclusion brings to an end to so much confusion that was present.

Once the Emu Creek Block were formed along with its related rocks from Coffs Harbour to Texas through to the Tamworth area, there was large scale bending of the New England area. So much so that the western facing fore-arc basin at Paddy's Flat was bent around so that it seems to be facing the north-east. This is what Rosenbaum (2012) terms the Coffs Harbour and Texas Oroclines and is the biggest but largely unknown tectonic features of our part of Australia. But more about that in a future post.

References/Bibliography:

*Hoy, D., Rosenbaum, G.,Wormald, R. & Shaanan, U. (2014) Geology and geochronology of the Emu Creek Block (northern New South Wales, Australia) and implications for oroclinal bending in the New England Orogen. Australian Journal of Earth Sciences. Vol8.
*Murray C., McClung G., Whitaker W. & Degeling P. (1981) Geology of late Palaeozoic sequences at Mount Barney, Queensland and Paddys Flat, New South Wales. Queensland. Government Mining Journal V82.

Tuesday, 4 February 2014

The Road to The Gorge

Note that since this post was written the Towgon Grange Granodiorite has been renamed the Towgon Grange Tonalite.



Many people in the region know about “The Gorge”. It is a remote, yet popular area on the Clarence River. The road to The Gorge is interesting because of the change in geology that is experienced. The main route to The Gorge is via Grafton and Copmanhurst. By travelling west from Copmanhurst along the Clarence Way you move from the sedimentary rocks of the Clarence-Moreton Basin. First, the rugged cliffs made from the Kangaroo Creek Sandstone give way to the rolling hills of the Walloon Coal Measures then Koukandowie Formation. Some road cuttings show weathered examples of these rocks. Turning off the Clarence Way and passing over the camping ground, swimming hole and bridge at Lilydale leads you to The Gorge turn-off. The Lilydale and Newbold areas have some of the oldest rocks of the Clarence-Moreton particularly the Laytons Range Conglomerate. But on the day I was there, I was not so interested in those rocks… because I was getting into the New England Orogen.

It is rare opportunity for me to explore the foot hills of the New England region. I love the feeling of the place, the wonderful landscape, climate, history and even culture. The place just seems to have a feeling of connection with the people who live there. Luckily, I managed to visit the edges of the New England escarpment for a little while on the weekend. While there I managed to experience more of the rocks that are the foundations of the landscape of New England.

Towgon Grange Tonalite - on The Grange Road, Middle Clarence River area
Driving along The Gorge road the rocks of the Silverwood Group are passed by. These are slightly enigmatic rocks of the New England Orogen, interpreted as subduction complex rocks (Van Noord 1999). Mainly outcropping in streams the rock of the Silverwood Group in this area are none the less quite hard and old metamorphosed marine sedimentary and volcanic rocks. The Silverwood Group is interesting because it also occurs near Texas in Southern Queensland and it is only partially understood in our region. But more about the Silverwood Group in a future post.

Round tors appear by the road side near Table Creek about 15km south of The Gorge. These tors are a classical shape formed by the weathering and erosion of granite type rocks. Here are rocks that make up part of the New England Batholith. The batholith is numerous masses of intrusive igneous rocks plutons that were molten well before Australia was separate from Gondwana. The ‘granite’ here is called the Towgon Grange Granodiorite. Like the Dumbudgery Creek Granodiorite that occurs about 20-30km further north the pluton is bisected by the path of the Clarence River. This helps to illustrate the unusual behaviour of the Clarence river as it travels backward and forward over soft and hard rocks. In fact the other side of the pluton can be easily found on the other side of the river just off the Clarence Way.

The Towgon Grange Granodiorite intrudes into the Silverwood Group meta-sediments. The rock sample at Table Creek (pictured) is actually not a granodiorite. It is notionally similar in appearance but contains much less potassium-feldspar. The main minerals are light coloured plagioclase feldspar, quartz and darker clinopyroxene and amphibole. The rock sample shows that much of the clinopyroxene is mantled (surrounded) by amphibole. The lack of potassium-feldspar means that this particular sample is probably a Tonalite according to the most popular rock classification (QAPF). In fact Bryant et al (1997) actually notes that the Towgon Grange Granodiorite only contains small amounts of Granodiorite, with most being Tonalite or Quartz Diorite. This is a good example how stratigraphic names may be misleading to first time geologists!

Bryant et al (1997) classifies the Towgon Grange Granodiorite as an I-type granite of the Clarence River Supersuite. This means that the Towgon Grange Granodiorite is derived from the melting of other igneous rocks. The Towgon
Grange Granodiorite is also comparatively low on silica (quartz) in comparison to other Clarence-River suite intrusions. It still contains enough quartz that it is generally visible in hand specimens. The age of the Towgon Grange Granodiorite is about 248-249Ma old. The younger sedimentary rocks of the Clarence-Moreton Basin overlie parts of the Towgon Grange Granodiorite and Silverwood Group.

The Towgon Grange Granodiorite is one of those rocks that just about no one in the general public has heard of. But, it is a good example of rocks that illustrate many points about the landscape evolution of the New England Orogen and the Clarence River. It occurs in a scenic area and is also a very attractive rock in its own right.


References/bibliography:
*Bryan, C.J., Arculus, R.J. & Chappell, B.W. 1997. Clarence River Supersuite: 250Ma Cordilleran Tonalitic I-Type Intrusions in Eastern Australia. Journal of Petrology V.38 No. 8.

*van Noord, K.A.A. 1999. Basin development, geological evolution and tectonic setting of the Silverwood Group IN Flood, P. G. (ed.) Regional Geology Tectonics and Metallogenesis: New England Orogen - NEO '99 Conference University of New England.

Friday, 1 November 2013

Hills of old sea floor muck

There has obviously been a bit of a lull in my blogging of late. I’ve been busy with family medical trips to Queensland and I’ve had less free time too. But some interesting things have happened with one formal presentation on coal seam gas and water and another presentation to be given in a couple of weeks. But on the aspects that interest me most (non-CSG geology), I’ve also been contacted by academics from a couple of different universities. It is nice to know that they feel I can help them with some research projects. I'll post more about that at a future date.

Best of all lookout - Springbrook National Park
Except for the hills on the horizon the rock in this photo is mainly
of the Neranleigh-Fernvale beds.
During the trip to Queensland I met up with family on the Gold Coast. We decided to have a day up in the popular Springbrook National Park area. In particular the views in this country are astonishing. The Best Of All Lookout certainly lives up to its name with incredible views of the valleys of the Tweed region. Mount Warning looks stunning and the rugged terrain of the volcanic shield remnants beautiful. And this was on a hazy day!

To get to Springbrook national park from the Gold Coast it is necessary to traverse the oldest rocks in the Tweed region. These are sediments of the Neranleigh-Fernvale beds. These are represented by the initially steep hilly terrain as you head westward up the range. Hinze Dam, for example, is located on this rock type. Time has weathered and eroded much of this rock away but still it remains as a significant landscape feature. These rocks and hills would probably be better known if the lavas associated with the Tweed Volcano had not erupted.

The Neranleigh-Fernvale beds are interesting rocks because of their mode of formation. They are essentially muds and debris flows that have been deposited in a trench during a period known as the Paleozoic. The trench was caused by the subduction of a continental plate under the then eastern Australian landmass. These sediments were then scrapped off and buckled into a large mountain range that has since been mostly eroded away. All of this occurred while Australia was part of the super-continent Pangaea which existed well before Gondwana.

Today, in the Northern Rivers the Neranleigh-Fernvale beds form the steep eroded terrain in the Tweed Valley (with the exception of some lavas and intrusions associated with the Tweed Volcano). They outcrop in a band at the very edge of the Alstonville Plateau to Byron Bay. They only occur as a band in the Ballina area because they are obscured by Jurassic sediments and the Cenozoic volcanic rocks. Like the Springbrook area, driving from Ballina to Alstonville or from Cabarita to Chillingham means traversing this formation. As soon as you get off the coastal plain and head up the hills you are passing the rocks of the Neranleigh-Fernvale beds. These beds are then obscured by the more recent sediments or volcanic rocks associated with the Tweed Volcano.

As for the Springbrook area, if you’d like to know more I recommend a book by Warwick Wilmott called Rocks and Landscapes of the Gold Coast Hinterland. The processes and timing of events in the Gold Coast area are very very similar to those processes that occurred in the Tweed valley area and so might be worth a read even if you don’t cross the border!

Warwicks book can be obtained from the Queensland Division of the Geological Society of Australia here.

Saturday, 20 July 2013

It's a Demon of a Fault

Many people have requested that I do a post on the Demon Fault. I've struggled to put something together because structural geology is not one of my strong points and secondly because there was so little published information about it, except for some specific papers in the 1970’s. Thankfully, a few months ago Babaahmdi & Rosenbaum (2013) published a detailed paper summarising what was known in the 1970s, presenting how the fault appears, how it seems to have developed and how it may fit into the development of eastern Australia. It is worth noting that Gideon Rosenbaum from The University of Queensland has been the major researcher on New England structural geology for the last 5 years. If it was not for him and his student’s research we would be struggling to understand some of the basic features of the older rocks of the region including the Demon Fault.

Large faults are usually have quite distinctive landscape features. The Demon Fault is mainly a transverse type fault (movement on the fault horizontally rather than vertically) which displays very obvious topographical features. Transverse faults often form valleys, where the rock of the fault has been broken down into what is called gouge or rock-flour. Gouge is very weak material. It is easily eroded and rivers often preferentially follow the route of the fault carving out the gouge into deep valleys. The presence of deformational features in the surrounding rock can give an indication of how deep the fault was when it was active.

The Demon Fault is a prominent feature because it is evident from a series of valleys from near the Queensland Border to Dorrigo. At the Queensland end it is partly obscured by the Cenozoic Main Range Volcanics and in the Dorrigo area the end is obscured by the Cenozoic aged Ebor Volcanics. Geological maps of the area show a nice linear feature with obvious truncation of pre-existing geological units. Aerial photos also show the fault up nicely with streams preferentially flowing along the trace of the fault and contrasting with the rugged forested mountains surrounding it. I’ve never taken a photo of any part of the Demon Fault but a nice photo taken from an aeroplane can be found here: http://www.panoramio.com/photo/35890361

The Timbarra River has followed the Demon Fault creating linear valley
http://www.panoramio.com/photo/35890361 (used with permission)

Korsch et al (1978) observed that the Demon Fault had displaced several geological units including intrusions of the Bungulla Monzogranite (now known as the Rocky River Monzogranite), Dumbudgery Granodiorite and Newton Boyd Granodiorite as well as the Drake Volcanics. The fault was interpreted as a dextral strike-slip fault (a fault where the eastern side had moved south relative to the western side). Korsch et al (1978) calculated that the fault had displaced these units 17km which is substantial in Eastern Australia. Dating of the displaced granite intrusions provides a possible maximum date of within Triassic period (249-232 million years). The nature of deformation features adjacent to the faulting indicates that the fault was shallow and/or was created in a brittle environment. Badaahmadi & Rosenbaum (2013) speculate that the timing of the faulting may actually be similar to that of faulting and extension in the earth’s crust that formed the Ipswich and Clarence-Moreton Basins (more about this in future posts).

There are many factors in understanding the Demon Fault. It is interesting to note that other authors have come up with different lengths of displacement including 30km in the northern part of the fault and 23Km in the central part. Badaahmadi & Rosenbaum (2013) have calculated that the northern part of the fault displaced 35km, in the centre by 25km and south by 19km. Some components of reverse faulting (where one side of the fault slid down and away from the other side) were observed. Additionally, it was noted that the Demon Fault did not appear to follow one big long line but instead had numerous splays (deviations, splitting, etc) especially in the south. Badaahmadi & Rosenbaum (2013) suspect that there may be two causes to the different lengths:
  1. Splays may have created movement of the fault which had a vertical component as well as horizontal.
  2. There may have been some fault reactivation of the northern part of the fault as recently as the Cenozoic era.
Both of these possibilities really need a discussion in their own right, rather than cursory mention. So, I’ll get back to these in a future post. I also want to cover the significance of the Demon Fault in formation of the Texas and Coffs Harbour Oroclines which are incredibly large features that I’ve briefly touched on in an earlier post about the South Solitary Island.

References/bibliography:
*Babaahmadi, A. & Rosenbaum, G. 2013. Kinematics of the Demon Fault: Implications for Mesozoic strike-slip faulting in eastern Australia. Australian Journal of Earth Sciences. V.60
*Korsch, R.J., Archer, R. & McConachy, G.W. 1978. The Demon Fault. Journal and Proceedings, Royal Society of New South Wales. V111.

Monday, 10 June 2013

How wonderfully marbleous!

There are some rock types that are very common around the country and around the world that just don’t seem to rate much of a mention in the Northern Rivers. One very common rock is limestone formed from corals in a shallow sea, just like the Great Barrier Reef. Limestone is made almost entirely of the mineral calcite. Some parts of the world have vast terrains dominated by limestone called karst landscapes and it is quite distinctive. Limestone terrains sometimes form amazing subterranean cave systems as the stone is dissolved by rainwater infiltration into the formation. These karst terrains include north-west Mexico and other parts of North America, a giant band through northern England and a wide area of South Australia along the Great Australian Bight. However, it is a landscape absent from the Northern Rivers.

Outcrop of limestone north west of Tabulam
Having said that vast areas of limestone don’t exist in the region it is worth noting that they do exist in small areas here and there within the older rocks of the New England Orogen. The reason for this is interesting. The New England Orogeny was a period of mountain building during periods of plate collision which included a period of subduction of an oceanic plate under the Australian continental landmass during the Silurian period. The material on the surface of the oceanic plate was often accreted, that is scraped off and squashed onto the Australian continent. Seamounts are old islands in the middle of the sea. Such as, those around modern day Hawaii or Fiji. The seamounts were accreted onto the continental mass where they created little pockets of limestone in midst of the jumbled, squashed mass of deep seafloor sediments.

This means that if you find limestone in the New England area you are actually finding the preserved remnants of a little tropical island reef or lagoon. An especially nice thought, when you find some limestone on a cold frosty New England winter morning. One relatively accessible place to see some limestone is an old quarry on the Pretty Gully Road just north-west of the town of Tabulam which sits on the Bruxner Highway crossing of the Clarence River. The stratigraphic unit that the limestone of the area is part is the Emu Creek Formation which also includes areas of interesting fossils (more about that in yet another post). However, the quarry is interesting for more reasons than just as an occurrence of limestone.

Following the period of subduction and accretion a period occurred where intrusions of molten magma pushed their way into the accretionary sedimentary rocks. It occurred a couple of times including during the Late Permian to Early Triassic and created one part of what is referred to as the New England Batholith. The batholith is an array of granitic rocks that stretches through the whole New England Tablelands. The intrusions of the Late
fresh face of limestone - note the sparkles from the calcite crystals
Permian to Early Triassic included the emplacement of the Bruxner Monzogranite, a type of granite pluton (more about this specific rock in a future post). This pluton heated up and metamorphosed the rocks around it and one of which was that body of limestone near Tabulam. Contact metamorphism of limestone creates the rock called marble and this has happened at Tabulam. Although, the quality of marble is questionable because of the amount of impurities.

Other things happened to the limestone during metamorphism too. The transfer of fluids into and out of the cooling magma created chemical reactions which concentrated elements such as iron. This process develops what is called a skarn, a body of altered limestone with sometimes economic amounts of minerals. The minerals in a skarn can be diverse and very, very valuable but the minerals are based on the chemistry of the granite pluton. In the case of the chemistry of the Bruxner Monzogranite, there was not much of value except lots of iron which formed abundant amounts of the minerals magnetite and haematite. This has been considered for mining in the past but the small size and low grade means it is not a viable iron mine.

There are other small limestone deposits all around the New England and all of them are interesting for one reason or another. Some north of Inverell have lovely caves, others near Tamworth are mined for lime on a large scale. While others, just have interesting little features that illustrate what happened during the formation of our region.

References/bibliography:

*Bryant, C.J., Arculus, R.J. & Chappell, B.W. 1997. Clarence River Supersuite: 250Ma Cordilleran Tonalitic I-type Intrusions in Eastern Australia. Journal of Petrology. v38.

*Lishmund, S.R., Dawood, A.D. & Langley, W.V. 1986. The Limestone Deposits of New South Wales. 2nd Ed. Geological Survey of New South Wales

Wednesday, 1 May 2013

Greeny Stuff at Port Macquarie

Serpentinite at Port Macquarie
A fascinating area of the northern rivers is right at Port Macquarie. This is a post that I’ve wanted to start for a long time but because the area is quite complex I’ve baulked at the prospect. I’ve just wanted to discuss too much, to dive into the deep end. I now realise that I should just start with an introduction to the formation of the fascinating rocks and come back for many more posts about more specific details in the near future.

The picture to the right shows the nature of one of the rock types at Port Macquarie. If I recall correctly this photo was taken at the southern end of Flynns Beach. It is a characteristic rock and given the odd shapes preserved in it implies quite an interesting history. The rock is serpentinite in two forms. The first being the banded appearing one which is called serpentinite schist. The second is a block of serpentinite which has not had the schistose fabric developed in it. I’ve discussed serpentinite occurring elsewhere such as at Baryulgil in previous posts but as far as Serpentinite goes the Port Macquarie area has heaps of it.

Serpentinite is a rock mainly comprised of the mineral group Serpentine. This is a very silica poor rock formed by the regional metamorphism of Olivine rich rocks such as Dunite or Peridotite. These parent rocks are from deep below the oceanic crust in the deepest parts of a layered sequence called Ophiolite and because of this it is rarely preserved on land. The metamorphism of the serpentinite is actually at the same time as large blocks of the Dunite and Peridotite rich oceanic crust are thrust and rotated during tectonic plate collision. Because serpentinite tends to be ‘slippery’ it is mostly present around major regional fault systems where it is ‘squeezed’ into place. However, its relationship to other nearby tectonic blocks is detailed and requires a separate blog post on its own.

At Port Macquarie the parent rock appears to have been a calcium rich variety of Peridotite called Harzburgite. There are also other rocks mixed in with the Serpentite, so much so that the area is often referred to as a melange. These other rocks are sometimes (but not always) part of the Ophiolite. For example slightly shallower ones such as gabbro which has been metamorphosed to rocks called Blue Schists. Also occurring are non Ophiolite rocks such as marble and other types of schist. Because of the complexity some 'inclusions' in the melange are from a different source than the Ophiolite, that is a story for another post.

As for the age of the Serpentinite unit, direct dating is impossible due to metamorphism re-setting the dating clock of the rock. The best that can be achieved is the last date of metamorphism. Even then the ultramafic (silica poor) nature of the rock means that minerals that can be used for dating (such as zircons) are uncommon or simply absent. Therefore the age of the Port Macquarie Serpentinite is only estimated from the surrounding rocks. However recent work by Nutman et al (2013) has narrowed the age of metamorphism and probable emplacement of the serpentinite to 251-220Ma which is the late Permian to early Triassic. How they found the date is quite interesting with adopting multiple techniques physical, nuclear and chemical.

Bibliography/references:

*Aitchison, J.C. & Ireland, T.R. (1995). Age Profile of Ophiolitic Rocks across the Late Palaeozoic New England Orogen, New South Wales: Implications for tectonic models. Australian Journal of Earth Sciences. Vol.42.
*Nutman, A.P., Buckman, S., Hidaka, H., Kamiichi, T., Belousova, E., Aitchinson, J.C. 2013. Middle Carboniferous-Triassic eclogite-blueschist blocks within a serpentinite melange at Port Macquarie, eastern Australia: Implications for the evolution of Gondwana’s eastern margin. Gondwana Research.
*Och, D.J., Leitch, E.C. & Caprarelli, G. 2007. Geological Units of the Port Macquarie-Tacking Point tract, north-eastern Port Macquarie Block, Mid North Coast Region of New South Wales. Quarterly Notes of the Geological Survey of New South Wales. Vol.126.

Thursday, 13 December 2012

A southern solitary island

How do you find out about something you can’t visit? From time to time I’ve wanted to visit sites that were on private land but I was unable to contact the landholder. More recently I find that the landholders do not want me on their land because of fears that I’m something to do with a gas company exploring for coal seam gas reserves (which I’m not). However, there is one place that is nearly impossible to get to because of its remoteness and the level of control that a government department have (for good reasons). I’d dearly like to visit this place because of the history, biology and of course the geology. The place is South Solitary Island off the coast of Coffs Harbour and Woolgoolga.

North Solitary Island is also considered part of the Coramba Beds
South Solitary Island has a lighthouse and an old lighthouse keepers residence which is disused and slowly deteriorating. It is perched on a rock that just sticks straight out of the sea. A few small islands are part of the island group but they are all really just rocks sticking out of the ocean. I understand that the National Parks and Wildlife Service licence visits by tourists to the island lighthouse once a year by helicopter. I’d love to go but unfortunately I don’t think I could afford such a trip.
The Solitary Islands (and the South Solitary Island in particular) is known to be rock comprised of turbidites (marine mass wasting derived sediments) derived from volcanic parent rock and ash-fall tuff (Korsch 1993). This same assemblage is present on the mainland throughout the area called the Coffs Harbour Block or Coffs Harbour Association and is considered Carboniferous in age. The stratigraphic unit is probably the Coramba beds which mean there is also the possibility that chert, jasper and metabasalt are present as they are elsewhere on the mainland.

I had no idea about the geology of South Solitary Island until I read Korsch (1993) in which he was permitted to visit all of the solitary islands to determine whether the concept of a giant fold (called an orocline) was present off the coast. If the orientation of the rock strata was right it would demonstrate that the area between Brooms Head and Coffs Harbour and then inland up through the Orara region and eventually looping back up into Queensland was a giant fold in the earth. Korsch (1993) did observe just such features and this has resulted in much further interest and research (including papers published in the last 12 months) about the tectonic history of the New England and Northern Rivers. I will go into more details about the extraordinary folding and tectonic history in future posts as there is an incredible amount of detail and unknowns when it comes to our area.

Oddly, Weber et al (1978) mentioned that a report from 1945 that there is an area of molybdenum mineral deposit on the South Solitary Island. The size of the island (and being a national park) is such that it could never be mined but it is such an unknown curiosity. Webber et al (1978) describes the deposits:
Worthy of passing mention is an occurrence of molybdenite at the eastern extremity of the Demon Block. Narrow, molybdenite-bearing quartz veins have been reported from South Solitary Island, 16.5km northeast of Coffs Harbour, by Fisher (1945, p10). The host rock is unknown.
The reason this is a little odd in my mind is because molybdenite is not very common in the Coffs Harbour Block. Some molybdenum formed in areas related to specific types of intrusions to the south in the nearby Nambucca Block (e.g. see my earlier post on the Valla Monzogranite) but to my knowledge this has not occurred to any significant extent in the Coffs Harbour Block. Just another slightly out of place geological feature in our region.

References/bibliography:

Korsch, R.J. (1993) Reconnaissance geology of the Solitary Islands: constraints on the geometry of the Coffs Harbour Orocline. New England Orogen Conference 1993, University of New England.

Weber, C.R., Paterson, I.B.L & Townsend, D.J. (1978) Molybdenum in New South Wales. Geological Survey of New South Wales 43.

Saturday, 22 September 2012

Weirdly Wonderful Wongwibinda


I finally found them, photos of some of the strange metamorphic rock at Wongwibinda. I recently moved house and in the process I’ve lost many things but also found some things. Early this year I did a post on what were the broader conditions that lead to the geology of this area between Guyra and Ebor, namely thinning of the continental crust leading to increased heat flow and corresponding thermal metamorphism. I mentioned a rock type called migmatite and since I found my photos of the Wongwibinda migmatite, I thought I should go into a little more detail on this curious metamorphic feature.

Close angular folds in the Girakool Beds, Rockvale
The migmatites are strongly metamorphosed rocks of the Girrakool beds. The Girrakool beds are Carboniferous in age and were deposited in a marine environment. These beds were then accreted onto the edge of the Australian continent as part of the New England Orogen, much deformation occurred during this time. During or following this stage of tectonic forces that affected the New England region the Girrakool beds were subjected to a period of intense metamorphism. This affected one end of the beds more than the other. The western most part of the Girrakool beds in the Rockvale area remained relatively ‘uncooked’ but further to the east the effects of thermal metamorphism became greater creating schists known as the Ramspeck Schist and finally the zone of migmatites. The migmatites are faulted off by the Wongwibinda fault on the eastern side or are intruded by the Abroi Granodiorite which itself has been later metamorphosed into Gneiss.

Migmatite in the Aberfoyle-Wongwibinda area.
Note the ptygmatic folds and dyke on the left
The odd thing about the Wongwibinda migmatites generally is that they are actually three rocks in one: metamorphic sedimentary rocks becoming igneous at the same time. Usually rocks fit into the igneous and sedimentary categories neatly and then metamorphism can affect these rocks. In the case of migmatite the metamorphism is so great that the rock actually begins to melt, that is, it becomes an igneous rock with some of the sedimentary rock remaining unmelted. A characteristic of migmatite is ptygmatic folding, which is intense small scale folding with alternating light and dark bands. The dark bands are called the palaeosome which is the remains of the sedimentary rock and the lighter bands is insitu accumulation of melted rock called the Leucosome,. The leucosome is here comprised mainly of the minerals quartz, feldspar, mica and some garnet. Sometimes the leucosome can ‘break free’ from the ptygmatic folds and create dyke like structures. All of these features are visible in the picture opposite.

What can be seen at Wongwibinda is essentially the formation of a granite, specifically a S-type (sedimentary derived), frozen in time. Craven et al 2012 demonstrated that this time was very close to the Carboniferous-Permian age boundary, probably just in the Permian, that is around 297 million years ago. There are some fancy geological features in the New England highlands and in my mind this is one of them. If you travel up that way and see some rocks by the side of the road be sure to stop and look closely, there are so many unusual things to find.

References/bibliography:
*Danis, C.R., Daczko, N.R., Lackie, M.A. and Craven, S.J. 2010. Retrograde metamorphism of the Wongwibinda Complex, New England Fold Belt and the implications of 2.5D subsurface geophysical structure for the metamorphic history. Australian Journal of Earth Sciences V57.
*Craven, S.J. Daczko, N.R. and Halpin, J.A., 2012. Thermal gradient and timing of high-T-low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. Journal of Metamorphic Geology V30.
*Wilkinson, J.F.G. 1969 The New England Batholith - introduction. IN Packham G.H.(ed) - The geology of New South Wales. Geological Society of Australia. Journal V16.

Friday, 17 August 2012

A basin in the hills

During the Triassic and into the Jurassic periods (Being part of the Mesozoic era) three major sedimentary basins formed in our region which are preserved today. The biggest, the one most people know about, and the youngest is the Clarence-Moreton Basin. This is a thick sequence of rocks which extends to Nymboida in the South up into southern Queensland. The Clarence-Moreton formed on top of, and with the Ipswich Basin. In southern Queensland it also begins grading into the Surat Basin.

The Ipswich Basin is smaller than the Clarence-Moreton as both basins are formally defined, but various sub-basins within the Clarence-Moreton actually formed at the same time as many of the parts of the Ipswich Basin and several units appear to conformably underlie (there is no time gap in deposition) or even inter-bed with the lower units of the Clarence-Moreton. The Ipswich Basin outcrops in a north-south line west of Murwillimbah and at Evans Head and Brooms Head. It is well known in southern Queensland for large actively mined coal deposits, it is not so well known south of the border and is often confused with being part of the Clarence-Moreton Basin.

The least known Triassic-Jurassic Sedimentary Basin is the Lorne Basin. This is further south than the Ipswich and Clarence-Moreton Basins and for the purposes of this blog will define the southern limit of the Northern Rivers. The Lorne Basin is the smallest of the three Basins. The middle of the basin is located at the village of Kew, it extends west almost to the village of Comboyne, south to Coppernook, almost to Wauchope in the North, and is present on the coast at Camden Haven and Diamond Head (Bob and Nancy have a tour of Diamond Head). The modern day Camden Haven River flows across the basin.

Unlike its contemporaries the Lorne Basin has rather poor pickings as far as coal deposits goes. This at first might be surprising given the thick units of coal formed further to the North and South at the roughly the same time as the Lorne basin was forming. In fact the coal seams found in the Lorne Basin are only of any significance in the units known as Camden Haven Group, and even then these are ‘thin coaly beds’ according to Pratt (2010) and earlier authors. What gives us a clue about the apparent absence of coal is the abundance of another rock type, conglomerate. According to Pratt (2010) there are several units of conglomerate which show that the sediments that were deposited in the basin traveled only a short distance and the river systems that transported these sediments was in a high energy environment (remember that for organic rich sediments to accumulate that will form coal the environment needs to be stable and swampy).

The clasts that make up the conglomerate in the Lorne Basin are derived from the Palaeozoic aged basement rock of the New England Orogen that surrounds the Basin. The clast composition reflects the slight variability in the New England Orogen Rock which is slightly different if the rock came from the north or the south side of the Basin. I will discuss the individual units of the Basin in future posts. But the whole picture of high energy deposition in the basin shows us that the Lorne Basin is a little unusual. It actually appears that the basin was elevated (not low lying like the Clarence-Moreton, Ipswich, Surat, Gunnedah, Sydney etc Basins) and situated in between large mountain ranges, this is known as an inter-montane basin. The well-known examples large active of inter-montane basins are in Asia in places such as Mongolia (these are much bigger than the Lorne Basin). Closer to home the McKenzie Basin near Mount Cook in New Zealand is a good example, although it is a bit smaller than the Lorne.

After the sediments had been consolidated there was a period of faulting through the Lorne Basin and during the Cenozoic era intrusions of granitic rock affected some parts of the basin and it was also partly obscured by lavas from the same era, though much of this lava has now been eroded away. The nearby Comboyne Volcano/volcanic centre was probably associated with these lavas and intrusions. Erosion of the lavas has caused a very attractive landscape including the Ellensborough Waterfall.

Since writing the above post Dylan reminded me that there is a theory that the Lorne Basin was initially formed during a meteorite impact (See comments below). I'll have to dig up some literature and discuss why this might be the case, however, for the time being it is worth noting that according to Tonkin (1998) the overall shape of the basin is very similar to other impact structures around the world. As Dylan points out: we have yet more unanswered questions!

References/bibliography:

Pratt, G.W. 2010. A Revised Stratigraphy for the Lorne Basin, NSW. NSW Geological Survey Quarterly Notes.
Tonkin, P.C. 1998. Lorne Basin, New South Wales: Evidence for a possible impact origin? Australian Journal of Earth Sciences. V45.

Monday, 18 June 2012

Professor Bruce Chappell

Prof. Chappell at Macquarie University
(X-ray fluorescence laboratory) - photo from Macquarie University
Just a quick post following news that Professor Bruce Chappell from Macquarie University died in Canberra on the 22nd of April.

Prof. Bruce Chappell was a well known and respected member of the geological community. He undertook a great deal of geology and geochemistry research on many areas of Eastern Australia, but particularly igneous, metamorphic and volcanic terrains. He even had a symposium named after him in 1998! You know you've made a contribution when that happens!

Prof. Bruce Chappell was born in Armidale, New England in 1936. There he was educated including attendance at the University of New England. During his time at UNE he obtained the university medal, an honours degree in science and a masters degree. He was responsible for mapping a large portion of the Palaeozoic aged New England Orogen. Later he obtained a PhD from the Australian National University. He worked in academic fields for the remainder of his life at the ANU and at Macquarie University. He was also a fellow of the Australian Academy of Science and the Australian Geological Society.

I met Bruce Chappell only once, but I have encountered his work again and again and it is clear Australia has lost a person that has contributed so much to our understanding of this country.

I understand that an obituary will be published by the Geological Society of Australia in the coming month. I will post a link to this once it is published.
Subscribe to: Posts (Atom)

AltStyle によって変換されたページ (->オリジナル) /