Namespaces
Variants
Actions

std::forward_like

From cppreference.com
< cpp‎ | utility
 
 
Utilities library
Type support (basic types, RTTI)
(C++20)
(C++20)
(C++20)(C++20)(C++20)  
(C++20)(C++20)(C++20)

General utilities
Relational operators (deprecated in C++20)
Integer comparison functions
(C++20)(C++20)(C++20)  
(C++20)
Swap and type operations
(C++20)
(C++14)
(C++11)
(C++11)
forward_like
(C++23)
(C++11)
(C++17)
Common vocabulary types
(C++11)
(C++17)
(C++17)
(C++17)
(C++11)
(C++17)
(C++23)


 
Defined in header <utility>
template< class T, class U >
constexpr auto&& forward_like( U&& x ) noexcept;
(since C++23)

Returns a reference to x which has similar properties to T&&.

The return type is determined as below:

  1. If std::remove_reference_t <T> is a const-qualified type, then the referenced type of the return type is const std::remove_reference_t <U>. Otherwise, the referenced type is std::remove_reference_t <U>.
  2. If T&& is an lvalue reference type, then the return type is also an lvalue reference type. Otherwise, the return type is an rvalue reference type.

If T is not a referenceable type, the program is ill-formed.

[edit] Parameters

x - a value needs to be forwarded like type T

[edit] Return value

A reference to x of the type determined as above.

[edit] Notes

Like std::forward , std::move, and std::as_const , std::forward_like is a type cast that only influences the value category of an expression, or potentially adds const-qualification.

When m is an actual member and thus o.m a valid expression, this is usually spelled as std::forward <decltype(o)>(o).m in C++20 code.

This leads to three possible models, called merge, tuple, and language.

  • merge: merge the const qualifiers, and adopt the value category of the Owner.
  • tuple: what std::get<0>(Owner) does, assuming Owner is a std::tuple <Member>.
  • language: what std::forward <decltype(Owner)>(o).m does.

The main scenario that std::forward_like caters to is adapting "far" objects. Neither the tuple nor the language scenarios do the right thing for that main use-case, so the merge model is used for std::forward_like.

Feature-test macro Value Std Feature
__cpp_lib_forward_like 202207L (C++23) std::forward_like

[edit] Possible implementation

template<class T, class U>
constexpr auto&& forward_like(U&& x) noexcept
{
 constexpr bool is_adding_const = std::is_const_v <std::remove_reference_t <T>>;
 if constexpr (std::is_lvalue_reference_v <T&&>)
 {
 if constexpr (is_adding_const)
 return std::as_const (x);
 else
 return static_cast<U&>(x);
 }
 else
 {
 if constexpr (is_adding_const)
 return std::move(std::as_const (x));
 else
 return std::move(x);
 }
}

[edit] Example

Run this code
#include <cstddef>
#include <iostream>
#include <memory>
#include <optional>
#include <type_traits>
#include <utility>
#include <vector>
 
struct TypeTeller
{
 void operator()(this auto&& self)
 {
 using SelfType = decltype(self);
 using UnrefSelfType = std::remove_reference_t <SelfType>;
 if constexpr (std::is_lvalue_reference_v <SelfType>)
 {
 if constexpr (std::is_const_v <UnrefSelfType>)
 std::cout << "const lvalue\n";
 else
 std::cout << "mutable lvalue\n";
 }
 else
 {
 if constexpr (std::is_const_v <UnrefSelfType>)
 std::cout << "const rvalue\n";
 else
 std::cout << "mutable rvalue\n";
 }
 }
};
 
struct FarStates
{
 std::unique_ptr <TypeTeller> ptr;
 std::optional <TypeTeller> opt;
 std::vector <TypeTeller> container;
 
 auto&& from_opt(this auto&& self)
 {
 return std::forward_like<decltype(self)>(self.opt.value());
 // It is OK to use std::forward<decltype(self)>(self).opt.value(),
 // because std::optional provides suitable accessors.
 }
 
 auto&& operator[](this auto&& self, std::size_t i)
 {
 return std::forward_like<decltype(self)>(self.container.at(i));
 // It is not so good to use std::forward<decltype(self)>(self)[i], because
 // containers do not provide rvalue subscript access, although they could.
 }
 
 auto&& from_ptr(this auto&& self)
 {
 if (!self.ptr)
 throw std::bad_optional_access {};
 return std::forward_like<decltype(self)>(*self.ptr);
 // It is not good to use *std::forward<decltype(self)>(self).ptr, because
 // std::unique_ptr<TypeTeller> always dereferences to a non-const lvalue.
 }
};
 
int main()
{
 FarStates my_state
 {
 .ptr{std::make_unique <TypeTeller>()},
 .opt{std::in_place, TypeTeller{}},
 .container{std::vector <TypeTeller>(1)},
 };
 
 my_state.from_ptr()();
 my_state.from_opt()();
 my_state[0]();
 
 std::cout << '\n';
 
 std::as_const (my_state).from_ptr()();
 std::as_const (my_state).from_opt()();
 std::as_const (my_state)[0]();
 
 std::cout << '\n';
 
 std::move(my_state).from_ptr()();
 std::move(my_state).from_opt()();
 std::move(my_state)[0]();
 
 std::cout << '\n';
 
 std::move(std::as_const (my_state)).from_ptr()();
 std::move(std::as_const (my_state)).from_opt()();
 std::move(std::as_const (my_state))[0]();
 
 std::cout << '\n';
}

Output:

mutable lvalue
mutable lvalue
mutable lvalue
 
const lvalue
const lvalue
const lvalue
 
mutable rvalue
mutable rvalue
mutable rvalue
 
const rvalue
const rvalue
const rvalue

[edit] See also

(C++11)
converts the argument to an xvalue
(function template) [edit]
(C++11)
forwards a function argument and use the type template argument to preserve its value category
(function template) [edit]
(C++17)
obtains a reference to const to its argument
(function template) [edit]

AltStyle によって変換されたページ (->オリジナル) /